
Cost effective, Multilingual, Privacy-driven voice-enabled Services
www.compriseh2020.eu

Call: H2020-ICT-2018-2020
Topic: ICT-29-2018
Type of action: RIA

Grant agreement No: 825081

WP No4: Cost-effective multi-

lingual voice interaction

Deliverable No4.4: Final weakly supervised

learning library

Lead partner: USAAR

Version No: 1.0

Date: 28/02/2021

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

Document information
Deliverable Noand title: D4.4 – Final weakly supervised learning library
Version No: 1.0
Lead beneficiary: USAAR
Author(s): Thomas Kleinbauer (USAAR), David Adelani (USAAR),

Ali Davody (USAAR), Imran Sheikh (INRIA)
Reviewers: Raivis Skadin, š (TILDE) and Marc Tommasi (INRIA)
Submission date: 28/02/2021
Due date: 28/02/2021
Type1: OTHER
Dissemination level2: PU

Document history
Date Version Author(s) Comments

05/02/2021 0.1 Thomas Kleinbauer
et al.

Initial version

25/02/2021 0.2 Thomas Kleinbauer
et al.

Revised version integrating feedback
and comment from internal reviewers

28/02/2021 1.0 Akira Campbell and
Emmanuel Vincent

Final version revised by the Project
Manager and the Coordinator

1R: Report, DEC: Websites, patent filling, videos; DEM: Demonstrator, pilot, prototype; OTHER: Software Tools
2PU: Public; CO: Confidential, only for members of the consortium (including the Commission Services)

2

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

Document Summary

This deliverable documents the advances on the COMPRISE weakly supervised
learning library. Weakly supervised learning addresses the problem that state-of-the-
art supervised learning methods, for many relevant tasks, require enormous amounts
of manually labelled data. In this document, we explore alternatives to this costly en-
deavor for two specific areas of the project: Speech-to-Text and text processing.

Like its predecessor Deliverable D4.2, Deliverable D4.4 consists of two parts: a soft-
ware library and this document. An overview of the different system architectures is
given in Section 2. The scientific approaches underlying the software tools are de-
tailed in Section 3. For practical applications, Section 4 gives in-depth instructions
on how to install and use the library. Finally, we discuss our achievements and the
potential for future extensions in Section 5.

For Speech-to-Text, we focus on training better language models while continuing
with our previous idea of learning with the help of Speech-to-Text confusion networks
obtained from unlabelled speech data. We present components to train n-gram as
well as neural network language models from confusion networks and evaluate the
underlying approaches along with the components released in the initial Deliverable
D4.2 library.

For weakly supervised text processing, we present two alternatives to the approaches
outlined in the initial version of this library (see Deliverable D4.2). The first approach
uses Meta-Learning, a technique popular in the computer vision community and in-
creasingly so in the natural language processing community. We applied it here to
Named Entity Recognition (NER). A second approach leverages the knowledge inher-
ent in pre-trained language models through cloze-style queries, which is applicable
in few-shot and even zero-shot settings.

Furthermore, this deliverable introduces all necessary software tools for users and
developers to apply our techniques. The two parts of the library can be accessed
here:

• Speech-to-text:
https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-
learning

• Text processing:
https://gitlab.inria.fr/comprise/spoken-language-understanding-
weakly-supervised-learning

3

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

Table of contents

1. Introduction.. 5

2. Design and implementation of the learning components................................... 6

2.1. Learning components for Speech-to-Text .. 6

2.2. Learning components for text processing .. 6

3. Scientific approach .. 8

3.1. Cost-effective learning for Speech-to-Text ... 8

3.1.1. Learning with Speech-to-Text errors and confusion 8

3.1.1.1. Learning n-gram language models 9

3.1.1.2. Learning neural network language models 9

3.1.2. Experiments and evaluation .. 11

3.1.2.1. Experimental setup .. 11

3.1.2.2. Evaluation .. 11

3.2. Cost-effective learning for text processing ... 14

3.2.1. Weak supervision and alternatives.. 14

3.2.1.1. Weak supervision... 15

3.2.1.2. Meta-Learning.. 15

3.2.1.3. Leveraging pre-trained language models........................... 17

3.2.2. Experiments and evaluation .. 20

4. Software library.. 22

4.1. Library for cost-effective learning of Speech-to-Text 22

4.1.1. Prerequisites.. 23

4.1.2. Setup ... 23

4.1.3. Typical usage... 23

4.2. Library for cost-effective learning of text processing 25

4.2.1. Prerequisites.. 25

4.2.2. Configuration ... 26

4.2.3. Data format.. 26

4.2.4. Running the code .. 27

5. Summary and outlook.. 28

4

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

1. Introduction

The COMPRISE project has five main objectives: privacy-by-design, inclusiveness,
cost-effectiveness, sustainability, and real-world applicability. Work Package 4 (WP4)
is concerned with the cost-effectiveness aspects of the project, and approaches them
from two sides:

• The COMPRISE SDK (see Deliverable D4.1 “Initial COMPRISE SDK prototype”,
submitted to the European Commission on August 31, 2020 – Public) aims at
providing an easily accessible technical infrastructure that expedites the devel-
opment process of voice-enabled apps, especially for developers that are not
experts in voice technologies.

• Weakly supervised learning techniques are developed to significantly reduce
the necessary data annotation efforts when compared to classical supervised
learning.

In other words, WP4 addresses two of the major cost factors in the development
process of modern voice applications: the time and cost to bootstrap a basic app,
and the time and cost to employ state-of-the-art machine learning technologies.

This Deliverable D4.4 concerns itself with the weakly supervised parts of WP4, and
is an extension to Deliverable D4.2 “Initial weakly supervised learning library” (Sub-
mitted to the European Commission on April 29, 2020 – Public). Like its predecessor,
this deliverable consists of two parts, this document and a software library. Both
parts address Speech-to-Text (STT), Spoken Language Understanding (SLU), and
Dialogue Management (DM).

Since the submission of Deliverable D4.2, the approaches described therein have
been extended or even superseded where alternative developments in the research
community towards the same goal have gained traction. In particular, we have re-
ported in Deliverable D4.2 about alternatives to weakly supervised approaches for
SLU and DM. Despite showing considerable improvements over the supervised base-
line, the classification rates achieved by our weak supervision approach still left to be
desired for practical application. We therefore extended the work begun at the end
of the first reporting period and focused on domain adaptation approaches which
seemed to be more promising. In fact, this turned out to be a good decision, as we
are now able to reach much better classification results for few-shot or even zero-shot
settings, translating to a greatly reduced need for costly annotation.

Deliverable D4.2 provided two STT components, representing two distinct approaches,
for training STT models: (1) semi-supervised training driven by error detection (Err2-
Unk), and (2) dialogue state-based weakly supervised training. The first method
trained STT models by guiding a state-of-the-art Acoustic Model (AM) training method
with error predictions inferred from STT confusion networks. The second method ex-
ploited weak supervision from utterance-level dialogue state labels. These compo-
nents focused on obtaining reliable transcriptions from unlabelled speech data which
could be used for training both STT AMs and Language Models (LMs). The two com-
ponents can be used independently or combined together. Moreover, our evaluation
on different limited data setups showed that the Err2Unk training component resulted

5

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

in significant improvements over the state-of-the-art methods and gave additional im-
provements when used along with weak supervision from dialogue states.

This deliverable builds on top of the Err2Unk approach and provides a dedicated com-
ponent for training STT LMs, including statistical n-gram LMs and Recurrent Neural
Network (RNN) based LMs. As compared to existing STT LM training tools, the
COMPRISE STT LM component is aimed at learning LMs from alternate and uncer-
tain STT hypotheses, obtained from unlabelled speech data using initial or domain-
mismatched STT models.

This document gives an overview over the scientific approaches for both tasks and
documents the open-source releases of the accompanying software tools. Section 2
gives a quick overview of the design of the STT training components after including
the new COMPRISE STT LM component, and of the training component for text pro-
cessing. The underlying scientific approaches and the corresponding software tools
are presented in Sections 3 and 4, respectively. We conclude in Section 5.

2. Design and implementation of the learning components

2.1. Learning components for Speech-to-Text

The final weakly supervised learning library of COMPRISE retains the two main learn-
ing components for STT that were provided as part of the initial library. It adds a new
STT LM training component which enables the learning of LMs from STT confusion
networks. Hence, it is named as Confusion Network based LM (CN2LM). While the
initial library also relied on confusion networks for Err2Unk training, the CN2LM train-
ing component can be used independently or along with the Err2Unk component.3

Figure 1 presents an overview of the typical usage of the Err2Unk and CN2LM train-
ing components for learning STT models. The implementation relies on the Kaldi
STT toolkit,4 as highlighted in blue. The main contributions through the COMPRISE
libraries are highlighted in red and green colours, with red representing the Err2Unk
component from the initial library and green representing the CN2LM training compo-
nent. Additionally, Table 1 presents a quick reference on the implementation of these
two components.

2.2. Learning components for text processing

Concerning text processing, a graphical depiction of the full method is shown in Figure
2. We focus on Named Entity Recognition using a pre-trained LM (BERT), a template,
and lists of words representative of each Named Entity. The approach is exemplified
here with a concrete example. Details of the underlying approach are given in the
following chapter.

3Similarly, the CN2LM training component can also be used along with dialogue state driven weakly supervised
training of STT models, that was provided in the initial library.

4http://kaldi-asr.org/

6

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

Seed AM Seed LM

Labeled
Speech

Unlabeled
Speech

<nnet3 decoder>

Lattices
Confusion
Network

Error
Model

Err2Unk
Transcripts

Combined
Dataset

Err2Unk
Semi-supervised

AM, LM

Dev Data

Confusion Network
based LM
(CN2LM)

<Chain Recipe>

<Chain Recipe>

<lattice-mbr-decode>

<train Error Detector>

<tag Errors>

<CN2LM trainer>

Kaldi

COMPRISE D4.2

COMPRISE D4.4

Figure 1: Overview of error detection (Err2Unk) and confusion network (CN2LM) driven train-
ing of STT models (AM, LM). (Dashed arrows indicate ‘use for training’.)

test sentence template

I will visit Munich next week. Munich is a [MASK].

BERT

p(community)
p(team)

. . .

p(city)
p(town)

. . .

p(man)
p(girl)
. . .

LOC

prompt

predicts

argmax

Figure 2: System setup at test time. The input prompt to the BERT model is the concatenation
of the test sentence and the template, with the token to classify (here: Munich) pre-inserted
into the template. The output (LOC) is the predicted entity label for that token.

7

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

Table 1: Overview of error detection (Err2Unk) and confusion network (CN2LM) driven training
of STT models. (Note: Steps 3–5 are optional and are only for training a new LM, Step 6 is
optional and is only for training a new AM.)

Step Description Inputs Outputs Implementation notes
1 Train seed

STT models
Labelled speech Seed AM, LM Kaldi Chain recipe: Bash

scripts with Kaldi binaries
for processing speech,
Perl scripts to manage in-
puts and train LM, Python
scripts to train AM.

2 Prepare
Confusion
Networks

Unlabelled
speech, dev data

Confusion net-
works

Kaldi binaries to decode
speech to lattices, convert
lattice to confusion net-
work

3 Train Error
Detector

Dev confusion
networks

Error detection
model

COMPRISE libraries:
Python scripts to extract
features, train error model

4 Obtain unla-
belled speech
transcripts

Unlabelled
speech confu-
sion networks

Speech tran-
scripts

COMPRISE libraries:
Python scripts to tag
errors, format transcripts

5 Retrain AM Combined data New AM Kaldi Chain recipe (as
Step 1)

6 Retrain LM Labelled speech
transcripts, un-
labelled speech
confusion net-
works

New LM COMPRISE libraries:
Python scripts to train n-
gram and RNN LM

3. Scientific approach

3.1. Cost-effective learning for Speech-to-Text

3.1.1. Learning with Speech-to-Text errors and confusion

The initial COMPRISE weakly supervised learning library presented the STT con-
fusion network and error detection driven approach for semi-supervised training of
STT models. The focus of the underlying approach was to obtain reliable STT tran-
scriptions on the unlabelled speech for training STT AMs and LMs. The final weakly
supervised learning library presents CN2LM: a confusion network based LM learning
component.

As shown in Figure 3, STT confusion networks contain a sequence of confusion bins
with each bin containing one or more arcs representing alternative word hypotheses.
Each arc in a bin has an associated posterior probability or score, denoting that one
word hypothesis is more likely than others. The main motivation of CN2LM is to exploit
the alternative hypotheses and uncertainty embedded in the confusion network to
learn LMs from unlabelled speech data. The CN2LM component features training of
3-gram LM as well as RNN LM. We briefly discuss our approach to train these two
types of LMs from STT confusion networks.

8

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

ASR Confusion
Network

0 1when 2is 3next 4sixty 5one 6hGround Truth

0 1when/0.99898
<eps>/0.001023

2

is/0.99824

as/0.001023
<eps>/0.000734

3next/1 4sixty/0.96949
sixteen/0.030508

5<eps>/0.96952
one/0.030476

6

a/0.95596

eighth/0.039778

eight/0.001939
h/0.001323

<eps>/0.000974

one/3.1e-05

ASR Confusion
Network

0 1when 2is 3next 4sixty 5one 6hGround Truth

0 1when/0.99898
<eps>/0.001023

2

is/0.99824

as/0.001023
<eps>/0.000734

3next/1 4sixty/0.96949
sixteen/0.030508

5<eps>/0.96952
one/0.030476

6

a/0.95596

eighth/0.039778

eight/0.001939
h/0.001323

<eps>/0.000974

one/3.1e-05

Figure 3: Graphical representation of the reference transcription (top) and the STT decoded
confusion network (bottom).

3.1.1.1. Learning n-gram language models If we denote n-gram word sequences
occurring in a text corpus by uw, where u represents the context of previous n − 1

words for word w, then an estimate of n-gram LM probabilities can be obtained as

p(w|u) =
c(uw)∑
w c(uw)

(1)

with c(.) denoting counts. Smoothing methods need to be applied to these simple
count based estimates in order to obtain practically usable LMs. Modified interpolated
Kneser-Ney (KN) smoothing is known to provide the best performing n-gram LMs.5

However, arcs or words appearing in STT confusion networks carry fractional weights
or scores and KN smoothing cannot be applied directly. A modified interpolated ex-
pected KN smoothing (ieKN) approach was proposed to handle fractional counts6

and recently applied to learn n-gram LMs from crowdsourced and STT transcrip-
tions.7 We extend the ieKN approach to STT confusion networks to learn n-gram
LMs. Our approach first extracts n-gram bin sequences from the confusion network
and then populates different possible word sequences of length n. Each word se-
quence is assigned a score by multiplying the associated arc posteriors. The ieKN
smoothing approach is applied to obtain the n-th order probability estimates and a re-
cursive smoothing technique, similar to KN smoothing, is applied to obtain the lower
order probability estimates.

In terms of computational complexity, ieKN smoothing is identical to the traditional
KN smoothing. Additional computation is required by ieKN smoothing for estimating
expected counts from the fractional weights/scores of the word sequences of length
n. This computation is linear in terms of the number of distinct word sequences of
length n. Moreover, assigning scores to the word sequences observed in the STT
confusion network requires O(TAn) computations, where A is the average number
of arcs in a confusion bin and T is total number of confusion bins observed in the
unlabelled set. In practice, n = 3, A ≈ 3 and T is equivalent to the total number of
words expected in the unlabelled dataset.

3.1.1.2. Learning neural network language models Given a sequence of word-level
tokens w1, w2, ...wt, ..., wN from a corpus, a word-based RNN language model with

5Stanley F. Chen and Joshua Goodman. “An Empirical Study of Smoothing Techniques for Language Modeling”.
In: 34th Annual Meeting of the Association for Computational Linguistics. June 1996, pp. 310–318.

6Hui Zhang and David Chiang. “Kneser-Ney Smoothing on Expected Counts”. In: Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). June 2014, pp. 765–774.

7Michael Levit, Sarangarajan Parthasarathy, and Shuangyu Chang. “What to Expect from Expected Kneser-Ney
Smoothing”. In: Proc. Interspeech 2018. 2018, pp. 3378–3382.

9

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

parameters θw, θh, θy relies on the following formulation:

ht = σ(θh ht−1 + θw wt) (2)

q(ŵt+1|ht) = softmax(θy ht) (3)

where ht represents the RNN hidden state which tries to model the history or context
observed until wt, σ(.) is a nonlinear activation function, and the softmax function
estimates the history-dependent word level LM probabilities q(ŵt+1|ht). The RNN LM
parameters Θ = {θw, θh, θy} are trained to minimise the loss function:

Θ̂ ≈ arg min
Θ

∑
h

∑
j

− log q(ŵj
t+1|ht). (4)

State-of-the-art STT systems include RNN LMs to rescore the STT outputs decoded
by the AM and an n-gram LM. However, typical RNN LMs cannot be applied readily to
STT confusion networks. As depicted in Figure 3, each t in a confusion network cor-
responds to a confusion bin with different alternative word hypotheses. This implies
that Equations (3) and (4) cannot be applied. In order to address this, a hidden state
hit can be first computed for each possible arc wi

t in a bin and then a pooled state can
be obtained as follows:

hit = σ(θh ht−1 + θw wi
t) (5)

ht = pooli(h
i
t) (6)

where a standard mean, average, max or even attention based pooling mechanism
can be used. Additionally, the loss function must be updated to take care of the
multiple output arcs wj

t+1 possible at the next step t+ 1. To address this, we compute
the Kullback-Leibler (KL) divergence between the RNN predictions and the confusion
bin posteriors p(wj

t+1|ot). The LM loss function is then formulated as:

Θ̂ = arg min
Θ

∑
t

KL
j∈V

(
p(wj

t+1|ot+1), q(ŵj
t+1|ht)

)
(7)

where V denotes the LM vocabulary and ot+1 denotes the observed speech signal
which leads to the confusion bin posteriors.

Applying RNN LMs on STT confusion networks may appear to increase the computa-
tional complexity of the LM. However, it can be shown that the order of computational
complexity remains similar to that of an RNN LM applied to a text transcription of the
same length. Consider an RNN LM with vocabulary V being trained on a collection of
text transcriptions having a total length of T words. Equations (2) and (3) contribute
the main computations in the forward pass of the RNN. If we denote the number of
hidden layer neurons as H then the order of computations in the forward pass can be
given as:

f(T, V,H) ≈ (HH +HV)T

= O(HV T) : H � V (8)

The backward pass of the RNN sees a similar order of computations. In case of
an RNN LM over STT confusion networks, Equation (5) brings additional computa-
tion. If we consider that each confusion bin has on average A arcs then the order of
computations in the forward pass can be given as:

f(T, V,H,A) ≈ (HHA+HV)T

= O(HV T) : H � V,HA� V (9)

10

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

3.1.2. Experiments and evaluation

3.1.2.1. Experimental setup We investigate STT improvements in two different sce-
narios detailed below. Table 2 briefly presents the different datasets and the splits
used in these evaluation setups.

Human-human conversations: This is a matched domain limited data scenario
wherein both the labelled and unlabelled data are taken from the Verbmobil cor-
pus.8 We have divided the entire Verbmobil English speech corpus into four splits
and ensured that there are no overlapping speakers or conversations across the four
splits. Based on the labelled and unlabelled training splits, we denote this setup as
VM5-VM20.

Human-machine dialogue: We also analyse the matched domain scenario wherein
both the labelled and unlabelled data are human utterances extracted from a human-
machine dialogue system. We use subsets of the annotated Let’s Go dataset9 to
emulate this setup. We use data corresponding to the first 15 days of October 2008
as the labelled dataset and speech corresponding to the next two and half months
as unlabelled data. Data corresponding to the first 15 days and the last 15 days of
September 2009 are treated as development and test sets, respectively. We denote
this setup as LG4-LG19.

Table 2: Datasets and splits used in the evaluation setup. VM = Verbmobil, LG = Let’s Go, h =
hours.

VM5-VM20 LG4-LG19
Train labelled VM 5 h LG 4 h
Train unlabelled VM 20 h LG 19 h
Development VM 2 h LG 6 h
Test VM 3 h LG 6 h

3.1.2.2. Evaluation In order to evaluate the CN2LM approaches for learning LMs
from confusion networks, we report the standard Perplexity and Word Error Rate
(WER) measures on the development (DEV) and test (TEST) sets of the VM5-VM20
and LG4-LG19 setups. Our evaluation compares the following systems:

• Seed: the seed models trained only on the labelled sets (VM5 or LG4).

• Bestpath: semi-supervised models obtained in combination with the labelled set
and best-path STT transcriptions obtained on the unlabelled speech using the
seed models.

• CN2LM: semi-supervised n-gram or RNN LM trained on reference transcriptions
of the labelled set and confusion networks obtained by seed models on the
unlabelled speech.

• Err2Unk: semi-supervised models obtained in combination with the labelled set
and Err2Unk transcriptions obtained on the unlabelled speech using the seed
models and error prediction.

8Susanne Burger et al. “Verbmobil Data Collection and Annotation”. In: Verbmobil: Foundations of Speech-to-
Speech Translation. Ed. by Wolfgang Wahlster. 2000, pp. 537–549.

9DailRC. The Integral LET’S GO! Dataset. Last accessed April 1, 2020. URL: https://dialrc.github.io/
LetsGoDataset/.

11

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

• Oracle: models trained on labelled and unlabelled data along with their refer-
ence transcriptions.

The systems rely on the Kaldi Chain AM with Time Delay Neural Network (TDNN)
layers and i-vectors for speaker adaptation. Due to the limited data setups, our evalu-
ation uses 3-gram LM and Gated Recurrent Unit (GRU) based single layer RNN LM.
Following the standard approach, the 3-gram LM is used for first pass STT decoding
and RNN LM for pruned lattice rescoring.10

Table 3 presents a perplexity evaluation of the seed and semi-supervised 3-gram
LMs on the development and test sets of the two setups. It shows that there are
no significant differences in the LG4-LG19 setup which deals with short queries re-
lated to bus schedule information. However, for the VM5-VM20 conversational setup,
CN2LM 3-gram LM achieves significant perplexity improvements over the Bestpath
semi-supervised LM. Err2Unk semi-supervised LM shows higher perplexity due to
high <unk> LM probabilities, after retaining all error regions as <unk> in the unla-
belled speech transcripts.

Table 3: Perplexity of semi-supervised 3-gram LM. (Bold font denotes lowest perplexity.)

Bestpath Err2Unk CN2LM
Seed LM Semi-sup LM Semi-sup LM Semi-sup LM

DEV TEST DEV TEST DEV TEST DEV TEST
VM5-VM20 77.32 78.04 62.97 66.61 67.58 70.85 61.61 64.82
LG4-LG19 14.53 13.70 14.34 13.40 15.39 14.43 14.49 13.42

Table 4 presents a perplexity evaluation of the Bestpath and CN2LM based RNN
LMs. The improvements in the LG4-LG19 setup are not significant. However, the
VM5-VM20 conversation setup sees a big reduction in perplexities.

Table 4: Perplexity of semi-supervised RNN LM. (Bold font denotes lowest perplexity.)

Bestpath CN2LM
Semi-sup RNN Semi-sup RNN
DEV TEST DEV TEST

VM5-VM20 62.67 67.29 56.14 59.84
LG4-LG19 14.64 13.49 14.35 13.24

WER results on the development and test sets of the VM5-VM20 setup are presented
in Tables 5 and 6. Table 5 shows the effect of different AM and LM combinations
during the first pass decoding with 3-gram LMs. Seed and Oracle model perfor-
mances highlight the upper and lower bounds of the WER, respectively. Table 5
shows that Err2Unk AM+LM gives the lowest WER and outperforms the traditional
Bestpath semi-supervised AM+LM system. However, we would like to highlight that
the CN2LM semi-supervised 3-gram LM achieves lower WER compared to the Best-
path semi-supervised LM. Table 6 shows that minor WER reduction can also obtained
with CN2LM semi-supervised RNN LM.

WER results on the development and test sets of the LG4-LG19 setup are presented
in Tables 7 and 8. Similar to the VM5-VM20 setup, WER evaluation on the LG4-LG19
setup shows that the Err2Unk semi-supervised AM+LM achieves the lowest WER.

10H. Xu et al. “A Pruned Rnnlm Lattice-Rescoring Algorithm for Automatic Speech Recognition”. In: 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018, pp. 5929–5933.

12

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

Table 5: WER of semi-supervised AMs and 3-gram LMs in the VM5-VM20 setup. (Bestpath
LM column represents Oracle LM for Oracle AM row. Bold font denotes lowest WER and
underline denotes the difference is not statistically significant compared to the lowest WER. *
denotes CN2LM WER differences are statistically significant compared to respective Bestpath
LM.)

Bestpath Err2Unk CN2LM
Seed LM Semi-sup LM Semi-sup LM Semi-sup LM

DEV TEST DEV TEST DEV TEST DEV TEST
Seed AM 39.52 39.77 - - - - - -
Bestpath Semi-sup AM 33.91 34.35 31.88 32.90 30.08 30.86 32.08 32.56*
Err2Unk Semi-sup AM 30.74 32.12 29.15 30.70 28.66 29.74 29.60 30.38*
Oracle AM 26.12 26.42 21.75 22.20 - - - -

Table 6: WER after RNN LM re-scoring in the VM5-VM20 setup. (Bold font denotes lowest
WER and underline denotes the difference is not statistically significant compared to the low-
est WER. * denotes CN2LM RNN WER differences are statistically significant compared to
Bestpath RNN.)

Bestpath CN2LM
Semi-sup RNN Semi-sup RNN
DEV TEST DEV TEST

Bestpath Semi-sup AM+LM 30.76 32.00 30.76 31.59*
Err2Unk Semi-sup AM+LM 27.64 28.95 27.82 28.82

Table 7: WER of semi-supervised AMs and 3-gram LMs in the LG4-LG19 setup. (Bestpath
LM column represents Oracle LM for Oracle AM row. Bold font denotes lowest WER and
underline denotes the difference is not statistically significant compared to the lowest WER.)

Bestpath Err2Unk CN2LM
Seed LM Semi-sup LM Semi-sup LM Semi-sup LM

DEV TEST DEV TEST DEV TEST DEV TEST
Seed AM 38.98 38.46 - - - - - -
Bestpath Semi-sup AM 34.82 33.72 34.53 33.13 33.96 32.63 34.29 33.14
Err2Unk Semi-sup AM 32.39 31.32 31.99 30.66 31.90 30.44 31.97 30.52
Oracle AM 32.56 30.87 31.76 29.57 - - - -

Table 8: WER after RNN LM re-scoring in the LG4-LG19 setup. (Bold font denotes lowest
WER and underline denotes the difference is not statistically significant compared to the low-
est WER.)

Bestpath CN2LM
Semi-sup RNN Semi-sup RNN
DEV TEST DEV TEST

Bestpath Semi-sup AM+LM 33.95 32.64 34.30 32.96
Err2Unk Semi-sup AM+LM 31.64 30.11 31.63 29.91

However, Err2Unk AM with Bestpath and CN2LM based semi-supervised 3-gram LM
also achieve a similar level of performance. Similarly, rescoring with Bestpath or
CN2LM based semi-supervised RNN LMs reduces overall WER but does not show a
significant difference among the two approaches.

Overall it can be concluded that, for the Verbmobil dataset, that contains more sponta-
neous conversations, CN2LM based 3-gram LM gives consistent perplexity and WER

13

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

reductions over Bestpath semi-supervision. CN2LM based RNN LM gives large per-
plexity reductions but this did not translate into a WER reduction. In the case of the
Let’s Go dataset, that contains more restricted and shorter queries, differences in
perplexity and WER performance of CN2LM based LMs and Bestpath LMs are not
statistically significant. However, it must be noted that most improvements in the Let’s
Go setup come from the Err2Unk AM, which results in a performance level close to
that of the oracle system. Interestingly, Err2Unk AM+LM gives the lowest WER per-
formance in both the Verbmobil and Let’s Go setups, with 3-gram LM decoding as
well as RNN LM rescoring.

3.2. Cost-effective learning for text processing

The general situation that users of SLU and DM components find themselves in has
been described in Section 3.2 of Deliverable D4.2, and shall be summarised again
here to remind the reader of the context of our work.

The state of the art in many tasks in Natural Language Processing (NLP) relies on
Machine Learning, oftentimes in the form of supervised learning. Applying such ap-
proaches to new domains requires developers to perform two main preparatory steps:

1. Create a sufficiently large collection of in-domain data.

2. Annotate the collected data with the desired labels.

Deep learning approaches in particular give rise to a dilemma: on the one hand, they
typically outperform competing approaches in terms of prediction accuracy; on the
other hand, they work best with particularly large amounts of training data. This is
exactly where the cost aspect becomes relevant: both of the above steps potentially
take a long time, require a substantial effort, and draw on costly resources. Espe-
cially small and medium size enterprises might thus shy away from using supervised
learning because they cannot justify this significant investment.

As discussed in Deliverable D4.2, while collecting enough data to successfully train
a Deep Learning algorithm might be prohibitive, it may be feasible, even for smaller
companies, to collect and annotate a smaller amount of data. As we’ve demonstrated
before, this can then be used to apply techniques such as weakly supervised learning
to build models that supersede classic supervised algorithms trained on the same
small data. However, while significantly outperforming the supervised baselines in our
earlier work, the absolute performance of our initial weakly supervised learning setup
still left to be desired. This motivated the consideration of alternative approaches
towards the same cost-effectiveness goal, which we will discuss in the following.

3.2.1. Weak supervision and alternatives

In COMPRISE, we have so far considered three alternative approaches to cost-
effective NLP. Weak supervision in its core form has already been presented in De-
liverable D4.2 but we start with a summary of the approach previously taken for com-
parison and context. After that, we describe a number of experiments we have run
using Meta-Learning, an approach popular in Computer Vision and also increasingly
so in NLP. Unfortunately, this line of research did not achieve the desired outcomes,
either. Lastly, we describe a third approach that applies pre-trained LMs to allow for

14

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

few-shot or even zero-shot classification and yields very competitive results, leading
to both good performance and reduced annotation costs. For that reason, it is the
approach we ultimately settled on for the software portion of this deliverable.

3.2.1.1. Weak supervision Our weak supervision approach as described in Deliver-
able D4.2 started out with the premise that besides high-quality (but costly) manual
annotations, it is often feasible for different tasks to create annotations more afford-
ably with the help of automatic labellers, with the downside that the resulting annota-
tions are noisy.

This fact was appreciated through using a neural network architecture that extended a
base network by an additional noise layer (see Figure 4). The rationale was that dur-
ing training, a small portion of manually labelled high-quality data was interspersed
with a large amount of automatically labelled noisy data, and the additional layer
learned how to de-noise the predictions of the network.

Neural Network Softmax

Neural Network Softmax Noise Layer

x y

x z

b

Figure 4: Illustration of weakly supervised learning.

We explored different models for generating noisy annotations, and found that the
best performance was achieved with a sampling method that takes the part-of-speech
of the word to be relabelled as well as the the label of the preceding word into account.
However, when using 1,773 (= 1%) clean samples from the CoNLL dataset for Named
Entity Recognition, even that sampling method only achieves an F1-score of 42.77%.
This score significantly outperforms the baseline (using just the clean samples in a
supervised fashion) of 33.07%. However, an F1-score of 42.77% is still too low to be
of practical use, which motivated our consideration of alternative approaches.

3.2.1.2. Meta-Learning Meta-learning or learning to learn11 is a popular approach to
few-shot learning (i.e., when only a few labelled examples are available in the target
domain) with many applications in computer vision12 and some applications in NLP
(see13 for an overview). In the context of NER, most applications of meta-learning for

11S. Ravi and H. Larochelle. “Optimization as a Model for Few-Shot Learning”. In: ICLR. 2017; Chelsea Finn, P.
Abbeel, and S. Levine. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks”. In: ICML. 2017; Jake
Snell, Kevin Swersky, and Richard Zemel. “Prototypical Networks for Few-shot Learning”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017, pp. 4077–4087. URL:
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf.

12Timothy M. Hospedales et al. “Meta-Learning in Neural Networks: A Survey”. In: ArXiv abs/2004.05439 (2020);
Eleni Triantafillou et al. “Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples”. In: 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. Open-
Review.net, 2020. URL: https://openreview.net/forum?id=rkgAGAVKPr.

13Wenpeng Yin. “Meta-learning for Few-shot Natural Language Processing: A Survey”. In: ArXiv abs/2007.09604
(2020).

15

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

few-shot make use of Prototypical Networks14 or Model-Agnostic Meta-Learning.15

All these approaches require training on diverse domains or datasets to generalise to
new domains.

The goal of Model-Agnostic Meta-Learning (MAML) is to train a model on diverse
learning tasks such that it can perform well on new tasks with only a small number
of examples. In our case, different domains would take the role of these tasks. This
approach can be used for both zero-shot and few-shot learning. In normal deep learn-
ing training, we learn a single set of network parameters θ on all available domains.
However, in MAML, the key idea is to split the training data into two, and learn two
sets of network parameters θ and θ′. θ′ is learned by taking gradient descent over the
loss of the first-half of the training samples, while θ is learned using the average loss
on the second-half of the training ground-truth labels and predictions obtained by θ′.
This helps to model how the final model θ will perform on new domains.

Table 9 shows the result for zero-shot domain adaptation for NER on the OntoNotes
5.0 dataset.16 This dataset has six domains with annotation: broadcast conversation
(BC), broadcast news (BN), magazines (MZ), newswire (NW), telephone conversa-
tions (TC), and web blogs (WB). For all experiments, we use trained a BiLSTM model
using embeddings obtained from the last layer of the BERT transformer model. The
baseline is condition AGG, where we simply aggregate all the training data of the
domains, and evaluate on the target domain in each column. In all domains except
TC, AGG achieves better F1-scores than MAML and on average, AGG is better with
over 2% F1-score.

Table 10 shows the result for the zero-shot cross-lingual adaptation. We make use
of the NER datasets with three named entities: personal names, organisation and
location. The language datasets we used are: CoNLL200217 (Dutch and Spanish),
CoNLL200318 (English and German), Latvian,19 Italian,20 and French.21 On average,

14Alexander Fritzler, Varvara Logacheva, and Maksim Kretov. “Few-Shot Classification in Named Entity Recognition
Task”. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. SAC ’19. Limassol, Cyprus: As-
sociation for Computing Machinery, 2019, pp. 993–1000. ISBN: 9781450359337. DOI: 10.1145/3297280.3297378.
URL: https://doi.org/10.1145/3297280.3297378; Yutai Hou et al. “Few-shot Slot Tagging with Collapsed Depen-
dency Transfer and Label-enhanced Task-adaptive Projection Network”. In: Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics. Online: Association for Computational Linguistics, July 2020,
pp. 1381–1393. DOI: 10.18653/v1/2020.acl-main.128. URL: https://www.aclweb.org/anthology/2020.acl-
main.128; Jiaxin Huang et al. Few-Shot Named Entity Recognition: A Comprehensive Study. arXiv:2012.14978.
2020.

15Jason Krone, Yi Zhang, and Mona Diab. “Learning to Classify Intents and Slot Labels Given a Handful of
Examples”. In: Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI. Online:
Association for Computational Linguistics, July 2020, pp. 96–108. DOI: 10.18653/v1/2020.nlp4convai-1.12. URL:
https://www.aclweb.org/anthology/2020.nlp4convai-1.12.

16https://catalog.ldc.upenn.edu/LDC2013T19
17Erik F. Tjong Kim Sang. “Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity

Recognition”. In: COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002). 2002. URL:
https://www.aclweb.org/anthology/W02-2024.

18Erik F. Tjong Kim Sang and Fien De Meulder. “Introduction to the CoNLL-2003 Shared Task: Language-
Independent Named Entity Recognition”. In: Proceedings of the Seventh Conference on Natural Language Learning
at HLT-NAACL 2003. 2003, pp. 142–147. URL: https://www.aclweb.org/anthology/W03-0419.

19Normunds Gruzitis et al. “Creation of a Balanced State-of-the-Art Multilayer Corpus for NLU”. in: Proceedings
of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japan:
European Language Resources Association (ELRA), May 2018. URL: https://www.aclweb.org/anthology/L18-
1714.

20B. Magnini et al. “I-CAB: the Italian Content Annotation Bank”. In: Proceedings of the Fifth International Confer-
ence on Language Resources and Evaluation (LREC’06). Genoa, Italy: European Language Resources Association
(ELRA), May 2006. URL: http://www.lrec-conf.org/proceedings/lrec2006/pdf/518_pdf.pdf.

21Clemens Neudecker. “An Open Corpus for Named Entity Recognition in Historic Newspapers”. In: Proceedings
of the Tenth International Conference on Language Resources and Evaluation (LREC 2016). Ed. by Nicoletta Cal-
zolari (Conference Chair) et al. Portorož, Slovenia: European Language Resources Association (ELRA), May 2016,
pp. 23–28. ISBN: 978-2-9517408-9-1.

16

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

Table 9: Zero-shot domain adaptation for NER on several domains of OntoNotes 5.0. F1-
score (%) on the test set. The AGG and MAML methods are trained on sentences of all
domains except the target domain (in each column) while the in-domain method (bottom row)
is trained on sentences from the target domain only.

Method BC BN MZ NW TC WB Average

AGG 66.9 74.6 73.4 73.2 64.7 47.0 66.6
MAML 65.4 72.7 71.8 62.8 65.8 46.1 64.1

In-domain 75.6 85.3 86.1 86.1 59.1 50.6 73.8

Table 10: Zero-shot cross-lingual transfer for NER on European languages. F1-score (%) on
the test set. The AGG and MAML methods are trained on sentences of all languages except
the target language (in each column) while the in-language method (bottom row) is trained on
sentences from the target language only.

Method DE EN ES FR IT LV NL Average

AGG 68.3 71.5 68.4 59.7 69.7 61.3 75.8 67.8
MAML 67.7 70.8 70.2 62.5 69.4 60.6 76.0 68.2

In-language 78.0 89.6 84.0 68.1 76.8 78.8 86.8 80.3

the MAML approach is slightly better with a 0.4 F1-score improvement. Consider-
ing individual languages, AGG is better for German, English, Italian, and Latvian,
however.

Overall, MAML did not perform significantly better than the baseline model (AGG). A
possible future direction could be to explore other meta-learning algorithms like the
Prototypical Networks for NER. In the meantime, we present a third approach that
uses cloze-style prompts together with pre-trained LMs and performs well.

3.2.1.3. Leveraging pre-trained language models We now turn to our latest effort to
provide a method for cost-effective SLU and DM implementations. As before, we
focus on the NER task.

This approach is best motivated with an example. Let s = “I will visit Munich next
week” be the sentence to label. As is typical, most words in s do not denote a named
entity, only “Munich” does (LOC). For every detected entity, we would like to query a
pre-trained LM to find out its type. Ideally, we would like to pass s to the pre-trained
LM, then ask “What is Munich?” and receive “a location” as the answer. A cloze-style
version of such a query to the pre-trained LM would be the following prompt:

“I would like to visit Munich next week. Munich is a [MASK].”

The first part of the prompt is the sentence to label which serves as the context for
the second part, a template of a predefined form, e.g., “[TOKEN] is a [MASK]”.22

22For non-masked LMs, [MASK] is the empty word.

17

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

The LM’s prediction for the [MASK] is a probability distribution P (w|s) over the tokens
w in the vocabulary V. Unfortunately, we found that directly looking up the proba-
bilities for the named entity labels (e.g., the words location, organisation, etc.) and
choosing the label with the highest probability did not perform well. However, by as-
sociating with each entity type a list of words representative of that type, we reach
competitive performance (see Section 3.2.2). As an example, Table 11 shows repre-
sentative words for three named entity classes, Location, Person and Organisation.

Table 11: Examples of the representative word lists for entity types location (LOC), person
(PER), and organisation (ORG).

Entity Type Representative Words

LOC location, city, country, region, area, province, state, town, downtown
PER person, man, woman, boy, girl, human, someone, kid
ORG organisation, community, commission, department, association, company,

union, team

More formally, let L be the set of all labels for our NER classification task. We provide
a list of representative words Wl for each label l. Denoting the output of the LM by
P (.|s+T (w)) where s is the original sentence, T (w) is the prompt for token w, and +

stands for string concatenation, we easily assign label lw to the token w by

lw = arg max
l

P (v ∈ Wl|s+ T (w)). (10)

For the example above, (s = “I will visit Munich next week”; T(“Munich”) = “Munich is
a [MASK].”), the top-5 predictions using the BERT-large model are: city, success,
democracy, capital, dream. The largest probability (0.43) among all words is as-
signed to city which is among the representative words for label LOC. Thus, Munich
is labelled as a location.

The outlined approach raises three design questions which we address below:

1. How to determine the tokens that refer to named entities?

2. What constitutes a good template for the second half of the prompt?

3. How to define lists of representative words for each entity type?

A fourth decision to make is the choice of a pre-trained LM. Our results of comparing
four state-of-the-art pre-trained LMs are listed in Section 3.2.2.

Identifying named entities. Named entities (NEs) differ from other referents in that
they are usually expressed as proper nouns, although some NE schemes also include
entities such as numbers, date, and time expressions. Part-of-speech taggers can
identify occurrences of proper nouns (or numerals, ordinals) with a high degree of
accuracy. However, entity boundaries in case of multi-word expressions are usually
not marked explicitly. We found treating consecutive proper nouns a single entity to
be a reasonable heuristic.

Template selection. In order to gain insights into what makes a good template we
have experimented with a number of variants (see Table 12). Overall, we found that

18

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

Table 12: A list of alternative templates used in the comparison experiments

ID Template Description

T1 [TOKEN] is a [MASK]. The copula template is a straight-forward default that di-
rectly identifies the token with the mask.

T2 [TOKEN] was a [MASK]. This template differs from T1 only in the verb. We added
it to study the influence of tense on the prediction quality.
It lead to slightly worse results.

T3 [TOKEN] would be a [MASK]. A variant of the above that uses a modal auxiliary. It per-
forms similar to the past-tense copula.

T4 [TOKEN] a [MASK]. We further experimented with stripping down a template
to the minimum useful form. This template is ungrammat-
ical, however, and does not perform well.

T5 [TOKEN] [MASK]. This is the smallest template possible modulo word order.
It is the worst performing template in our experiments, es-
pecially failing to predict the PER class.

T6 [TOKEN] is an example of a [MASK]. These four templates are further variations of T1 that re-
place the verb to be with longer constructions. They do
not perform better than T1, though.

T7 [TOKEN] is an instance of a [MASK].
T8 [TOKEN] denotes a [MASK].
T9 [TOKEN] is well-known to be a [MASK].

T10 Many people consider [TOKEN] to be a
[MASK].

In all previous templates, the token to label appears as the
first word. Here, we test whether a longer left-hand side
context is beneficial to the pre-trained LM prediction. In
fact, our experiment shows a slight improvement over T1

by 2%.

T11 [TOKEN] is a common [MASK] known to
many people.

With this template, we test the effect of extending the
right-hand context. It does not produce the same perfor-
mance gain as T10, though.

T12 There are many [MASK]s but [TOKEN]
stands out nevertheless.

This template extends both the left-hand and the right-
hand side context simultaneously, but also presents to-
ken and mask in a contrasting relation. The performance
drops considerably, indicating that the LM has more diffi-
culties associating the mask and the token with each other
in this template.

T13 A [MASK] like [TOKEN] is often mentioned in
conversations.

Template T12 reverses the order of mask and token with
respect to the previous templates. This template shows
that the low performance of T12 is caused by this fact
alone, as it is one of the best-performing templates in our
experiments.

T14 A [MASK] like [TOKEN]. Are the additional filler words responsible for the good per-
formance of T13, or is it the way the relation between mask
and token are expressed using the word like? This re-
duced template suggests the latter, as it performs even
slightly better than T13.

T15 This [MASK], [TOKEN], is worth discussing. This template is similar in spirit to T5 in that it tests
whether proximity of mask and token are important, only
with the order of the two reversed, and some context
words added. It performs better than T5 but not on par
with most other templates.

19

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

most templates performed similarly, except where we intentionally tested the limits of
the format. These experiments are detailed in Section 3.2.2.

Representative words. If some examples of the target domain are available, the
representative word lists can be derived from predictions for this data. That is, the
representative words for each entity type are selected from the most probable mask
fillers given the respective prompts. Alternatively, in a zero-shot setting or where
otherwise appropriate, a set of words can be provided by a domain expert. For the
experiments in the next section, this is the strategy we followed. Of course, it is
possible to combine both methods, with an expert choosing a suitable subset from
words with the highest probability.

The method described thus far can be used for zero-shot classification as it does not
require any training. In a few-shot setting however, we can improve the performance
of the system by fine-tuning the pre-trained LM using the labelled data in the target
domain.

A further performance gain can be made by combining our method with a standard
supervised classifier in a simple two-fold ensemble. Based on a selection threshold
ph, we label the token according to the prediction of the prompt-based method if the
probability of the predicted label is higher than the threshold ph:

max
l
P (v ∈ Wl|s+ T (w)) > ph, (11)

otherwise we relay the output of the supervised classifier. The threshold ph is a hyper-
parameter that can be tuned on the training examples from the target domain. We
call this setup the hybrid approach.

3.2.2. Experiments and evaluation

Comparing language models We study the role of the choice of pre-trained LM in
our approach by comparing four pre-trained Transformer models: BERT,23 RoBERTa,24

GPT-225 and XLNET.26 BERT and RoBERTa are trained to predict masked tokens that
are randomly corrupted in the training sentence. GPT-2 is based on autoregressive
language modeling, but it is less efficient predicting masked tokens. XLNET attempts
to address the limitations of BERT for next-word prediction (i.e., autoregressive LM)
while retaining good performance on Natural Language Understanding (NLU) tasks.

Table 13 compares the four LMs of the CoNLL03 dataset for the zero-shot setting as
described above. We use the template “[TOKEN]is a [MASK]” for this experiment.
We observe that BERT and RoBERTa have the best performance and GPT-2 is the
worst when compared to the other models. This is expected, as BERT and RoBERTa

23Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”. In:
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, June 2019, pp. 4171–4186. DOI: 10.18653/v1/N19-1423. URL: https://www.aclweb.
org/anthology/N19-1423.

24Y. Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692. July 2019.
25Alec Radford et al. Language Models are Unsupervised Multitask Learners. https : / / d4mucfpksywv .

cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf.
2019.

26Zhilin Yang et al. “XLNet: Generalized Autoregressive Pretraining for Language Understanding”. In: Advances in
Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019, pp. 5753–
5763. URL: https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-
Paper.pdf.

20

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

Table 13: Performance comparison of four PLMs on the CoNLL03 dataset in zero-shot setting.

BERT RoBERTa GPT-2 XLNet

LOC 69% 65% 42% 58%
PER 80% 73% 45% 57%
ORG 42% 43% 13% 34%

Avg. 60% 59% 36% 49%

Table 14: Comparing different templates T1–T15 and their impact on the F1-score in the zero-
shot setting on the CoNLL03 dataset. The results suggest that the performance of a template
depends mainly on its naturalness.

Label T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

LOC 69% 60% 62% 52% 46% 66% 63% 60% 67% 69% 61% 57% 73% 70% 60%
PER 80% 72% 73% 65% 7% 81% 82% 71% 76% 82% 83% 15% 76% 81% 57%
ORG 42% 48% 51% 35% 35% 44% 39% 41% 47% 44% 41% 36% 48% 54% 34%

Avg. 60% 57% 57% 47% 31% 59% 57% 55% 60% 62% 59% 36% 62% 63% 49%

are trained to predict the masked token in the input text which is exactly how we
formulated the NER task.

Choice of template A second variable in the setup is the choice of the template
used in the prompt. We compare 15 different templates in the zero-shot setting (see
Section 3.2.1.3). Table 14 presents the results of these experiments.

Domain adaptation We now assess the extent to which our prompt-based approach
can improve the performance of available baseline methods for NER in a domain
adaptation setting. Specifically, we are interested in a setting where knowledge of
the source domain should be transferred to a target domain for which the number of
available training samples is very limited.

We consider two baselines: in the AGG baseline, we merge the training data of the
source and target domain and train an NER classifier on the resulting aggregated
dataset. In the Fine-tuning baseline, we first train the model on the source domain
and then fine-tune it on the training set of the target domain. Both of these ap-
proaches have been shown to reach competitive results in comparison with other
state-of-the-art methods.27 In both cases, a BERT-large cased pre-trained LM fol-
lowed by a linear layer is used as the NER classifier.

In our first experiment, we also use the OntoNotes 5.0 dataset with the seven domains
outlined in the previous section. However, we exclude pivot texts (bible) because they
lack named entity annotations.

Following Wang et al.,28 we take one domain of the dataset as the target domain
27Jing Li, Shuo Shang, and Ling Shao. “MetaNER: Named Entity Recognition with Meta-Learning”. In: Proceedings

of The Web Conference 2020. WWW ’20. Taipei, Taiwan: Association for Computing Machinery, 2020, pp. 429–440.
ISBN: 9781450370233. DOI: 10.1145/3366423.3380127. URL: https://doi.org/10.1145/3366423.3380127.

28Jing Wang, Mayank Kulkarni, and Daniel Preotiuc-Pietro. “Multi-Domain Named Entity Recognition with Genre-
Aware and Agnostic Inference”. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, July 2020, pp. 8476–8488. DOI: 10.18653/v1/2020.

21

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

and the other domains as the source domain. We randomly select K = 100 sample
sentences from the target domain as our target training set. We also adopt a het-
erogeneous setup for selecting source and target labels. In particular, we choose
PERSON, ORG, PRODUCT as source labels and PERSON, ORG, PRODUCT, LOC, LANGUAGE,
ORDINAL as target labels. This discrepancy between target and source labels makes
transfer learning more challenging.

Table 15 depicts the results of our experiments on the various OntoNotes 5.0 datasets
averaged over five runs each. The table compares the performance of the baseline
models with that of our hybrid approach. It also shows the results of the in-domain
method, where we use all the training samples of the target domain for training the
classifier. As is evident from this table, our prompt-based hybrid approach boosts the
performance of all baseline models by a large margin.

Table 15: Domain adaptation for NER: F1-score of using the OntoNotes and i2b2 datasets.
Combining our prompt-based method with the Fine-Tuning approach achieves the best per-
formance. For all few-shot methods, we use K=100 samples of the target domain training set.
In contrast, the in-domain method uses all available training samples and serves as a topline.

Method BC BN MZ NW TC WB i2b2

AGG 46.3 47.9 46.9 52.7 51.7 43.8 53.5
AGG+Template 61.1 66.2 62.1 71.0 73.3 47.4 57.2
Fine-Tuning 66.7 71.2 69.3 74.1 65.2 49.1 62.3
Fine-Tuning+Template 72.0 72.6 74.6 74.3 77.0 49.1 65.1

In-domain 91.6 94.3 94.1 93.2 76.9 67.1 94.8

In our last experiment, we are interested in the impact of a greater discrepancy be-
tween source and target domain. We therefore take the OntoNotes 5.0 dataset as the
source domain and the i2b2 2014 dataset29 as the target domain, a BioNLP dataset
commonly used for de-identification tasks. We use PERSON, ORG, DATE, LOC as source
labels and PERSON, ORG, DATE, LOC, PROFESSION as target labels. The right-most col-
umn in Table 15 shows the results of our experiments. Again we observe the same
pattern, i.e., combining our method with supervised baselines achieves the best per-
formance.

4. Software library

4.1. Library for cost-effective learning of Speech-to-Text

The COMPRISE STT Weakly Supervised Learning library provides three main com-
ponents which represent the cost-effective STT training approaches proposed in
COMPRISE, namely:

• STT Error Detection driven Training.

acl-main.750. URL: https://www.aclweb.org/anthology/2020.acl-main.750.
29Amber Stubbs, Christopher Kotfila, and Özlem Uzuner. “Automated Systems for the De-Identification of Longi-

tudinal Clinical Narratives”. In: J. of Biomedical Informatics 58.S (Dec. 2015), S11–S19. ISSN: 1532-0464. DOI:
10.1016/j.jbi.2015.06.007. URL: https://doi.org/10.1016/j.jbi.2015.06.007.

22

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

• Weakly Supervised Training based on Dialogue States.

• Confusion Network based LM Training (CN2LM).

The first two components focus on obtaining reliable transcriptions of untranscribed
speech data which can be used for training both STT AMs and LMs. They can be
applied to any type of AM, although we choose the state-of-the-art Chain models in
our examples. Readers interested in the high-level design, experimental evaluation
and usage of these two components are directed to Deliverable D4.2.

The third component features training of statistical n-gram LMs and Recurrent Neu-
ral Network (RNN) LMs from alternate and uncertain STT hypotheses obtained on
untranscribed speech data. This section provides prerequisites and typical usage-
scenario of the CN2LM component only.

Source code and usage of these components is also available at:
https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning

4.1.1. Prerequisites

• Numpy 1.19

• Pytorch 1.5.1 to train the CN2LM RNN version

4.1.2. Setup

If you plan to use the trained LMs for STT with Kaldi:

• Ensure that you have a working Kaldi installation.

• Modify the softlinks steps and utils in this directory to point to egs/wsj/s5/steps/
and egs/wsj/s5/utils/, respectively, in your Kaldi installation.

• Modify the path of KALDI_ROOT and modify (or remove) the path to kaldi_lm,
SRILM and sox tools in path.sh

• Modify cmd.sh if you are using a different execution queue for Kaldi.

4.1.3. Typical usage

CN2LM training will typically go through the following steps.

Step 1. Train seed STT models

• Supervised training data with reliable speech-transcript pairs are used to train
the seed AM and LM. (Note that this step can be skipped if you already have
pre-trained AM and LM).

• A sample Kaldi recipe to train the seed AM and LM on a subset of the Let’s Go
dataset is made available in the egs/ directory.

Step 2. Prepare Confusion Networks

23

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

• The seed AM and LM are used to decode the unsupervised speech and dev
sets into STT lattices. (Sample script in egs/local/ if you are relying on sample
recipe from Step 1.)

• Obtain STT confusion networks from the lattices decoded on the unsupervised
speech and dev sets. The COMPRISE library assumes confusion networks
are in Kaldi sausage format. Assuming your lattices are generated by Kaldi
(as lat.*.gz), you can use our script to generate STT confusion networks as
follows:

bash local/err2unk/getSaus.sh lattice_dir graph_dir lm_wt

‘graph_dir’ is the one used by the Kaldi decoder,

‘lm_wt’ is the LM weight which gives the best dev set WER

Note that STT confusion networks, aka sausages, are generated in the
<lattice_dir>/sau/ directory, referred as saus_dir in the next steps.

Step 3. Train CN2LM 3-gram LM

• A 3-gram LM can be trained on the combined supervised training speech tran-
scripts and confusion networks obtained on the unsupervised speech as follows:

python local/cn2lm/ngramlm/build_cn2lm_arpa.py asr_vocab_file
sup_text unsup_saus_dir out_3glm_dir

’asr_vocab_file’ is the vocabulary following Kaldi’s words.txt format

’sup_text’ is the supervised reference transcription in Kaldi format

’unsup_saus_dir’ is the unsupervised speech confusion networks directory
generated in previous step

’out_3glm_dir’ is the output directory to store the 3-gram arpa LM

Note that this CN2LM component has built-in features to train interpolated
modified-KN smoothed 3-gram LMs only on reference transcriptions or only
on confusion networks. It can also make use of error predictions on con-
fusion networks to prune out the confusion network in non-error regions.
Check local/cn2lm/ngramlm/build_cn2lm_arpa.py to use this pruning.
Moreover, it has features to prune the maximum number of arcs seen in
confusion bins. Check global MAX_ARCS in local/cn2lm/ngramlm/data.py.

Step 4. Train CN2LM RNN LM

• An RNN LM can be trained on the combined supervised training speech tran-
scripts and confusion networks obtained on the unsupervised speech as follows:

python local/cn2lm/rnnlm/train_cn2lm_rnn.py asr_vocab_file
sup_text unsup_saus_dir dev_saus_dir dev_text out_rnnlm_dir

’asr_vocab_file’ is the vocabulary following Kaldi’s words.txt format

’sup_text’ is the supervised reference transcription in Kaldi format

24

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

’unsup_saus_dir’ is the unsupervised speech confusion networks directory
generated in previous step

’dev_saus_dir’ is the dev set confusion networks directory generated in
previous step

’out_rnnlm_dir’ is the output directory to store the RNN LM model in Py-
torch’s pth format

Note that this CN2LM component has built in features to train LSTM or GRU
RNN LM, sharing of input-output word embedding layers and support for dif-
ferent pooling schemes over confusion bin arcs. Moreover, it has features to
prune the maximum number of arcs seen in confusion bins. Check globals
in local/cn2lm/rnnlm/models.py and local/cn2lm/rnnlm/data.py.

• Support is provided to convert CN2LM GRU RNN LM to Kaldi RNN LM format
as follows:

bash local/cn2lm/rnnlm/kaldi_support/pytorch_rnnlm_to_kaldi.sh
asr_vocab_file kaldi_gru_lm_template_file pytorch_model
out_kaldi_model_dir

’asr_vocab_file’ is the vocabulary following Kaldi’s words.txt format

’kaldi_gru_lm_template_file’ is Kaldi nnet3 format template file. A tem-
plate for a single layer RNN LM with shared input-output embeddings and
Pytorch GRU cell is provided in local/cn2lm/rnnlm/kaldi_support/

’pytorch_model’ is the Pytorch format RNN LM trained in the previous step

’out_kaldi_model_dir’ will store Kaldi compatible RNN LM files

Note that this step currently supports only single layer RNN LM with shared
input-output embeddings and Pytorch GRU cell. Support for more layers
and LSTM can be easily added if a suitable kaldi_gru_lm_template_file
is created.

4.2. Library for cost-effective learning of text processing

4.2.1. Prerequisites

After retrieving a copy of the library, and before the software can be run, four depen-
dencies need to be installed:

• PyTorch - A popular machine learning library for training models.

• Transformers - A library that provides pre-trained language models.

• spaCy - A library for Part-of-Speech tagging.

• Seqeval - A library for measuring the performance.

Detailed installation instructions for PyTorch can be found under https://pytorch.
org/. Similarly, the website https://spacy.io/usage provides detailed installation
instructions for spaCy. For the other two dependencies, we recommend to install
them through pip:

25

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

pip install transformers seqeval

4.2.2. Configuration

The software is invoked with a configuration file that contains the following informa-
tion:

• Template - “[TOKEN] is a [MASK]” (without quotes) has been found to work well
in all cases.

• List of representative words - For each class of labels the user has to pro-
vide a list of support words that associated with the class.

• Number of shots in target domain - In the case of few-shot fine-tuning.

• Threshold - A parameter used in the prediction phase (see above).

The template, the list of words, and the threshold can be considered as hyper-
parameters and may be chosen either off-hand or, ideally, so as to maximise the
classifier performance on a validation set.

These configuration options are specified as members of a JSON30 object, using the
keys "template", "labels", "threshold", "shots". The value of "template" is a
string that must contain the substrings [TOKEN] and [MASK] - these mark the position
in the template that will be filled by the system during prediction. The value of the key
"labels" is another JSON object, in which the keys are the Named Entity labels to
be used, and the value for each such key is a list of strings representing the support
words, chosen by the user. If few-shot learning is employed, the value of the key
"shots" is a positive integer, specifying the number of samples that are randomly
sampled from the training data in order to fine-tune the BERT model. Finally, the
value of key "threshold" must be a floating point value between 0.0 and 1.0.

Figure 5 provides an example of such a configuration file.

4.2.3. Data format

For fine-tuning and for testing the classifier, the text should be in BIO format. This
format requires that the sentences to classify are stored in a plain text file, with each

30https://www.json.org

{
"template": "[TOKEN] is a [MASK]",
"labels": {

"LOC": ["city", "country", "region", "area"],
"PER": ["man", "woman", "child"],
"ORG": ["organisation", "company", "club"],

},
"shots": 100,
"threshold": 0.8,

}

Figure 5: An example configuration file for the template-based approach.

26

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

word on a separate line. Sentence boundaries are marked by an empty line. Each
word’s label should come after the word in the same line, separated by a TAB character
("�"). Here is an example of this format:

Arrived O
at O
Tyndrum B-LOC
at O
about B-TIME
two I-TIME
o’clock I-TIME
. O

Named entities that consist of more than one word are labelled such that the first
label has the prefix B- and the remaining words all have the prefix I- (see “about two
o’clock” in the example above). Single-word entities are labelled with the prefix B-
(see “Tyndrum”). Words that do not constitute any Named Entity are labelled with the
label O.

The text to be labelled should also be formatted in the same way, except that no labels
need to be given. The text would be provided as a plain text file with only a single
word on each line, and empty lines marking sentence boundaries.

4.2.4. Running the code

The classifier can be run out-of-the-box without any prior training (zero-shot setting).
However, to achieve better performance, we recommend a fine-tuning step with a
small number of labelled in-domain samples. In any event, the procedure to classify
an input text using the template method consists of two steps.

In the first step, we train a classifier on top of a pre-trained language model using
supervised learning:

python run_ner_write_probs.py --data_dir <datadir> \
--model_name_or_path <model-path>

Here, data_dir provides the path to the NER dataset. It should contain a file with
training data, called train.txt, and a file with test data called test.txt. The param-
eter model_name_or_path gives the name or path to the pre-trained language model.
The predictions of this model are written to <datadir> and are subsequently used by
the hybrid model.

We execute our hybrid model as a second step via the following command:

python template.py --data_dir <data-dir> \
--config <path_to_config_file> \
[--output_file <outfile>]

It takes the predictions of the supervised classifier as well as train and test data as
inputs and optionally writes the predicted tags in a separate file. Again, <data-dir>
refers to a directory containing training and test data of the NER task as well as the

27

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

predictions of the supervised model (This corresponds to output_folder in the first
step). The parameter - -config specifies the path to the configuration file (see Sec-
tion 4.2.2). The optional parameter <outfile> specifies the file to which the predic-
tions are written. If it is omitted, and the input file contains gold-standard annotations,
then only the classification performance is reported.

5. Summary and outlook

The COMPRISE library for weakly supervised learning provides software tools for
weakly supervised training of STT and NER in text.

The tools for training STT models retain the two main approaches proposed in the
initial library, namely training guided by STT error predictions (Err2Unk) and weak
supervision with dialogue states. A new STT LM training component is provided,
which can be used independently of the components from the initial library. The new
Confusion Network based LM (CN2LM) component supports training of both n-gram
and RNN LMs.

The evaluation of semi-supervised 3-gram and RNN LMs trained using CN2LM showed
significant reduction in perplexity on the Verbmobil dataset, containing human con-
versations. Interestingly, the lowest WER with 3-gram LMs was obtained with semi-
supervised AM and LM based on the Err2Unk approach. However, CN2LM based 3-
gram LM consistently performed better than Bestpath semi-supervised LMs. The re-
duced perplexity and consistent improvements over Bestpath semi-supervision make
CN2LM a potential approach to be tried alongside, or in combination with, Err2Unk
semi-supervision.

The evaluation of CN2LM on the Let’s Go dataset showed that it performs equally
well as Bestpath and Err2Unk semi-supervised LMs. It can be noted that the im-
provements in this setup largely come from the semi-supervised AM, in particular the
Err2Unk semi-supervised AM. Moreover, the Err2Unk approach with lowest WER has
a 1% higher WER than the oracle models. This makes us conclude that setups simi-
lar to the Let’s Go system, which mainly involve a limited variety short length queries,
can be handled by Err2Unk semi-supervised AM and LM. However, as demonstrated
in Deliverable D4.2, dialogue state based weak supervision can give significant per-
formance gains in such a setup if utterance level dialogue state labels are available.

Owing to the less than ideal performance of our initial weakly supervised learning
approach for text processing, we have looked at alternative options towards the goal
of cost-effective SLU and DM. In this document, we have thus reported on two inde-
pendent efforts: Meta-Learning and a cloze-style template-based approach for NER.

Meta-Learning has received quite a lot of attention in the computer vision community
but is still a fairly new technique for NLP. We applied Model-Agnostic Meta-learning to
the NER task in a zero-shot setting, i.e., where no annotations for the target domain
are available. Unfortunately though, we found that the approach performs worse than
simply aggregating the source domains into a common training set for a standard
supervised learning approach.

This motivated yet another approach. As recent research has pointed at pre-trained
language models as general knowledge representations, we devised a template-
based approach to zero-shot and few-shot learning for NER. The key idea is that

28

GA No: 825081 – COMPRISE – D4.4– Final weakly supervised learning library

with the help of a list of representative words for each class label, ordinary cloze-style
queries can be submitted to a BERT model.

Perhaps the most attractive property of the approach is that it scales seamlessly down
to even a zero-shot setting, requiring no training at all. However, as we demonstrate
in our experiments, our model benefits from even as low as 100 labelled training
examples. Compared to the amount of data typically required for supervised learning,
this is still a very modest requirement, directly translating to enormous cost savings
for practitioners.

Our software is made publicly available under an Open Source license. The two parts
of the final weakly supervised learning library can be accessed here:

• Speech-to-text:
https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-
learning

• Text processing:
https://gitlab.inria.fr/comprise/spoken-language-understanding-
weakly-supervised-learning

29

