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Document summary 
This deliverable is devoted to the presentation, evaluation and analysis of model person-
alisation strategies for Speech-to-Text, Spoken Language Understanding and Dialogue 
Management. The associated software components are available to the public on the 
COMPRISE git repository.3 In this document, two different aspects are considered: one 
relates to the acoustic modelling for Speech-to-Text, and the other one concerns text-
related processing. 

The acoustic modelling is enhanced through the introduction of an accent embedding 
vector along with the conventional spectral features. This approach was detailed in De-
liverable D3.2, and is briefly recalled here and evaluated on Latvian data. 

With respect to text-related processing, it is important to recall that all text data which is 
collected on the COMPRISE Cloud Platform has been anonymized using the COM-
PRISE Text Transformer. Hence, this deliverable investigates the impact of training 
Speech-to-Text language models, Spoken Language Understanding models, and Dia-
logue Management models on such transformed data, compared to more classical train-
ing carried out using original data. Finally, approaches for improving these models 
through adaptation on a limited dataset of original text are presented, evaluated and 
discussed. 

  

 
3 https://gitlab.inria.fr/comprise/deliverables/deliverable-d3.4  
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1 Introduction 
The objective of Work Package 3 is to enable any user to interact with dialogue systems 
in any language. To achieve this objective, Work Package 3 focuses on combining ma-
chine translation with Speech-to-Text (STT) and Text-to-Speech (TTS), on combining 
machine translation with the components of a dialogue system, and on adapting these 
models to a user. Deliverable D3.4 is concerned by this last point and deals with person-
alised learning approaches. More precisely, Deliverable D3.4 describes the personalised 
learning library for STT, SLU (Spoken Language Understanding), and DM (Dialog Man-
agement). Two types of personalisation processing have been investigated: one relates 
to the acoustic modelling for STT, and the other one relates to text processing, and stems 
from the fact that initial (user-independent) models are trained from privacy-preserving 
text transformed data. 

With respect to the personalisation of the Acoustic Model (AM) for STT, Deliverable D3.4 
keeps with the approach proposed in Deliverable D3.2 (Submitted to the European Com-
mission on April 30, 2020 − Public).4 As the STT in the COMPRISE library is based on 
Kaldi [Povey et al., 2011], the investigated personalised learning approach also uses the 
Kaldi toolkit and framework. The proposed approach relies on providing information on 
the speaker’s accent, through the introduction of an x-vector accent embedding along 
with the usual spectral features. In Deliverable D3.2, the approach was evaluated on the 
Verbmobil corpus [Hess et al., 1995], and on accented English speech from the Voxforge 
project.5 We evaluate it here on Latvian data. 

The other personalisation aspects that we have investigated relate to text processing, 
and to the fact that the data collected by the COMPRISE Cloud Platform has been trans-
formed via the COMPRISE Text Transformer to preserve privacy. This implies that user-
independent models for STT Language Modeling (LM), SLU and DM are trained on 
transformed data rather than the original (untransformed) data. This deliverable investi-
gates how much this impacts the model performance, and personalisation approaches 
are studied to investigate how the use of some original, typically user-specific data can 
help improve models trained on transformed data. 

This deliverable is organised as follows. Section 2 recalls the text transformations that 
have been proposed and investigated in COMPRISE for preserving privacy, and intro-
duces the resulting problem for LM, SLU and DM model training. Section 3 explains 
where the computations take place within the COMPRISE architecture. Section 4 pre-
sents and discusses the model personalisation strategy for STT, both for the AM and for 
the LM components. Section 5 presents and discusses the model personalisation strat-
egy for SLU and for DM. Finally, the main functionalities of the software library are de-
scribed in Section 6. 

2 Privacy-preserving text transformations 
The goal of Task 3.3 “Personalised privacy-preserving learning” is to compensate for the 
possible reduction in model quality incurred by the use of privacy-transformed training 
data. In COMPRISE, privacy-preserving text transformations have been developed as 
part of WP2 and implemented in the COMPRISE Text Transformer. They are briefly re-
called here to remind readers of their specificities and to provide the relevant context. 

 
4 https://www.compriseh2020.eu/files/2020/05/D3.2.pdf 
5 http://www.voxforge.org 
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2.1 Named Entities 
It is clear that any method to detect private information in text is prone to mistakes. This 
could lead either to uncritical information getting replaced, or worse, private information 
getting leaked. Knowing the limitations of privacy-preserving methods is thus crucial. In 
COMPRISE, we have addressed this problem in two ways: first, we focus on the expres-
sion of private information in the form of Named Entities; and second, we have developed 
a replacement strategy that can provide privacy even under circumstances where some 
of the private information has not been correctly identified by our recognisers. 

Named Entities are expressions in text that refer to people, objects, locations, etc. with 
specific names, rather than generic words. For instance, a certain person could be re-
ferred to as “Jane” or as “the woman on the right”, where the first case qualifies as a 
Named Entity, while the second case does not. It seems intuitive that Named Entities 
are more susceptible to carrying private information than the more generic variants, and 
therefore most state-of-the-art tools for detecting private information in text use auto-
matic Named Entity Recognition (NER). However, it must also be noted that there are 
ongoing efforts to detect descriptive, non-Named Entity, references in text as well, for 
instance in the Horizon 2020 project MAPA.6 

Despite the formal guarantees we provide (see p.14 of Deliverable D2.2, submitted to 
the European Commission on April 30, 2020 − Public),7 some application domains may 
require that absolutely no original piece of information relating to the identity of a person 
remains in the transformed document, for instance for confidentiality or legal reasons. 
This is often the case in highly critical domains, such as medical patient records. How-
ever, such an absolute standard is very difficult to achieve, since even the most thorough 
human editor is prone to occasionally missing an instance of personal information in a 
document. Automatic means, even the COMPRISE solution, cannot reach 100% accu-
racy either, and therefore serve best as pre-processing tools in situations with such strict 
requirements. 

2.2 Replacement strategies 
Once private information has been identified in a document, there are different ways to 
handle it. The most radical way, completely deleting such words, would lead to distorted, 
ungrammatical texts in most cases. Instead, in COMPRISE, we have considered differ-
ent ways to replace the identified private words with uncritical alternatives as listed in the 
following replacement strategies. In all cases we assume that it is non-trivial for an at-
tacker to infer the original tokens that were replaced. 

Redact. In this strategy, the private tokens are replaced with a non-word placeholder 
that is typically not part of the vocabulary of the source text, e.g., ▮▮▮▮▮. From a 
privacy perspective, what perhaps seems to be the strictest form of protection might 
actually be less desirable because of the less-than-perfect recognition rates of automatic 
systems: an attacker can decide with certainty which of the tokens were part of the orig-
inal text, since the replacements stand out clearly. 

Typed placeholder a.k.a. value-class membership [Tang et al., 2004]. This strategy 
uses private category markers like LOCATION as the replacement token. It is similar to 
Redact, and provides the same level of privacy. However, it also provides additional 

 
6 https://mapa-project.eu/ 
7 https://www.compriseh2020.eu/files/2020/05/D2.2.pdf 
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information about a replaced token’s category and might thus be more useful than Re-
dact for certain Natural Language Processing tasks for which the transformed data is 
used. 

Named placeholder. A fixed category exemplar is used to replace all private tokens of 
that category [Pestian et al., 2007], e.g., all locations are replaced by “London”. This 
strategy makes it slightly more difficult to judge which sentence was transformed and 
which was not, but for all instances that differ from the exemplar, it is clear that they must 
have been part of the source. 

Word-by-word replacement. Here, the words in questions are replaced with other 
words, randomly chosen from a set of words of the same category. We can distinguish 
between value distortion if the replacement tokens are from an external source, and 
value dissociation when the surrogate tokens are from the same corpus. The latter keeps 
the distribution of tokens in the resulting document unchanged, which might be relevant 
for some tasks. Both variants make it hard to identify transformed sentences, which is 
reflected in lower values. 

Full entity replacement. Text coherence could be improved if source tokens were con-
sistently replaced by the same surrogates. One downside of the word-by-word strategy 
is that multi-word expressions could lead to nonsensical replacements when each con-
tained word is replaced individually, e.g., “Frankfurt Airport'' could be transformed to 
“New Francisco”. A variant is thus to replace full entities instead of single words. This 
strategy does not necessarily lead to a higher level of privacy but the expected gain in 
coherence might benefit downstream tasks. 

The following table illustrates the result of applying each of the outlined strategies. 

Table 1: Illustration of various privacy-preserving text transformations. 

Original Hi, Mister Miller, the Lufthansa flight from Frankfurt Airport to Rome 
is leaving at six pm.  

Redact Hi, Mister ▮▮▮▮▮, the ▮▮▮▮▮ flight from ▮▮▮▮▮ 
▮▮▮▮▮ to ▮▮▮▮▮ is leaving at ▮▮▮▮▮ ▮▮▮▮▮.  

Typed place-
holder 

Hi, Mister PER, the ORG flight from LOC to LOC is leaving at TIME.  

Named place-
holder 

Hi, Mister Smith, the SAP flight from London to London is leaving at 
night.  

Word-by-word 
replacement 

Hi, Mister John, the Bosch flight from New Boston to Berlin is leaving 
at eleven morning.  

Full entity re-
placement 

Hi, Mister John, the Bosch flight from New York to Berlin is leaving 
at twelve pm. 

 

2.3 Impact on LM, SLU and DM models 
In the operating branch of COMPRISE, STT is followed by one or more text processing 
steps. In a full dialogue system, these can be grouped into SLU, which includes tasks 
such as intent classification, and DM, in which the system decides which actions to take 
in reaction to the speaker input. 
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Some of the challenges faced by STT and text processing are similar to each other albeit 
manifested in different forms, while other aspects are typical only for one of the two pro-
cessing parts. For instance, regional dialects provide a challenge for STT components 
mostly through variations in the pronunciation. Other differences exist, too, such as 
grammar or choice of words, but the challenges brought about by these effects are com-
paratively minor. The main burden for dealing with dialects and accents thus lies on the 
shoulders of the STT component. 

On the other hand, like STT, all text processing components in COMPRISE must be 
ready to work with models trained on privacy-preserving transformed data. Since the 
training branch is separate from the operating branch, and happens first and foremost in 
the COMPRISE Cloud Platform, GDPR requirements demand that all data is anony-
mised before it can be made available for cloud-based learning algorithms. Conse-
quently, since the models are trained on data that differ from actual usage data, there is 
a risk that they perform below their potential when deployed in the actual application. 

Therefore, we are interested in studying the magnitude of this performance degradation 
for LM, SLU and DM tasks, and investigating what countermeasures can be provided to 
compensate for it. The core idea is that, besides the privacy-transformed data available 
in the COMPRISE Cloud Platform, each user has their untransformed text data available 
that could be processed locally on the user’s device or their instance of the COMPRISE 
Personal Server (see Deliverable D4.3, submitted to the European Commission on Au-
gust 31, 2020 − Public)8 to boost the performance of the component models. 

3 Architectural context 
An overview of the COMPRISE architecture is provided in Figure 1, with the overall po-
sitions of the STT, SLU and DM components. 

The personalisation of STT AMs translates into the two “Speaker vector computation” 
blocks, and their use by the subsequent “STT learning” and “STT” blocks. The “Speaker 
vector computation” module computes an x-vector accent embedding which is handled 
by the AM along with the conventional spectral features and helps personalise the AM. 
At run time, the x-vector accent embedding is computed on the user’s device or COM-
PRISE Personal Server and is never sent to the COMPRISE Cloud Platform. 

Concerning the text processing for LM, SLU and DM, an initial “generic” user-independ-
ent model is first trained using text that has been transformed for privacy preservation. 
This deliverable investigates how using some original text data (i.e., untransformed text) 
can help improve the corresponding models. 

 
8 https://www.compriseh2020.eu/files/2020/08/D4.3.pdf 
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Figure 1: Overview of STT training and decoding in COMPRISE. 
 

4 Model personalisation strategy for STT 
This section presents the model personalisation strategy for STT. Two aspects are con-
sidered: AM personalisation and LM adaptation. Section 4.1 provides additional evalua-
tion of the personalisation of the AM that has been proposed and described in Delivera-
ble D3.2. The personalisation is achieved through the use of an x-vector accent embed-
ding, that characterises the speaker’s accent, along with the conventional spectral fea-
tures. The additional evaluation is carried out on Latvian data. Regarding LMs, the initial 
models are trained on privacy-preserving transformed text data, so Section 4.2 investi-
gates the adaptation of such LMs using a limited amount of original text data. 

4.1 Acoustic model personalisation 
Current STT systems trained on native speech often perform poorly when applied to non-
native or accented speech. In our previous work (cf. Deliverable D3.2), we proposed to 
compute x-vector-like accent embeddings and use them as auxiliary inputs for the AM in 
order to improve the recognition of multi-accented English data containing native, non-
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native, and accented speech. In this section, we review this idea and report new experi-
ments using accented Latvian speech data. 

4.1.1 Speaker embedding 
In Deliverable D3.2 we investigated AM personalisation approaches that are based on 
making the AM speaker-aware. This was achieved by providing speaker specific infor-
mation at the input of the AM neural network, along with conventional spectral features. 
To do this, we considered various types of speaker embeddings. 

I-vectors, initially developed for speaker recognition, have since been largely used in 
other speech processing tasks, including speech recognition [Saon et al., 2013]. 

X-vector speaker embeddings have been introduced in [Snyder et al., 2018]. They are 
computed using a neural network trained to recognise speakers from a speech segment. 
The lower layers correspond to a time delay neural network that processes short-term 
frame contexts. Then a pooling layer computes statistics over the whole speech seg-
ment, which are processed by a few fully connected layers to classify speakers. The 
embedding is obtained from the last hidden layer. 

X-vector accent embedding is another approach that we have proposed in Deliverable 
D3.2 and [Turan et al., 2020]. It is very similar to the x-vector speaker embedding ap-
proach, except for the last layer that classifies (recognises) accents, instead of speakers. 
The training of this model requires accented data with accent labels for training, but the 
data doesn’t need to be transcribed. The STT AM is then trained on transcribed data, 
but this data doesn’t need to have accent labels. 

4.1.2 Evaluation on non-native and accented English data 

We have evaluated our method on native, non-native, and accented English speech. For 
the native and non-native data, we used the Verbmobil corpus which contains sponta-
neous speech from meeting scheduling dialogues [Burger et al., 2000]. In Verbmobil, we 
selected American English dialogues as native data and English dialogues from German 
speakers as non-native data. We also gathered British, Indian, and Australian non-pro-
fessional accented speech recordings from the VoxForge project. We created training, 
test, and adaptation sets for AM training using disjoint sets of speakers (cf. Table 2). For 
decoding, we use a 3-gram LM trained over the native data where decoding parameters 
are kept fixed for all experiments. In particular, we just focus on the AM adaptation and 
do not perform lexicon or LM improvements. 

Table 2: Statistics of the speech data from Verbmobil and Voxforge corpora, used for 
training and evaluating the AMs. 

Corpus Data Type 
Training Set Test Set 

# of Spk. Dur. (h) # of Spk. Dur. (h) 

Verbmobil 
Native (US) 235 25.4 25 1.1 

Non-Native (DE) 25 1.0 25 1.1 

 
Voxforge 

 

British (UK) 25 1.0 25 1.2 

Australian (AU) 25 1.0 25 1.3 

Indian (IN) 25 1.0 25 1.4 
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We used Mel-frequency cepstral coefficients as inputs for the accent embedding net-
work. A 512-dimensional accent embedding was extracted from the last hidden layer 
before the nonlinearity. Non-overlapping chunks of 0.5 s duration were utilised with an 
online extraction scheme. In other words, we extracted the accent embedding for each 
0.5 s segment by combining all frames from the beginning of the utterance up to that 
point. The embedding network was trained on utterances of native (US) and accented 
(UK, IN, AU, DE) speakers in Verbmobil and VoxForge, excluding those belonging to the 
AM test set. 
 
Table 3: WERs (%) achieved with different embeddings on native, accented, and non-

native English data. 

Embedding model British 
(UK) 

Indian  
(IN) 

Austr. 
(AU) 

Non- 
native 
(DE) 

Average 
accent and  
non-native 

Native 
(US) 

No embedding 27.9 35.6 28.1 23.8 28.4 14.0 

i-vector (speaker) 23.7 31.8 24.3 21.9 24.8 12.8 

x-vector speaker 24.4 32.1 23.6 20.3 24.5 12.5 

x-vector accent 22.2 30.3 21.2 20.1 23.1 12.4 
 

Table 3 presents the word error rates (WERs) obtained on native, non-native, and ac-
cented English9 speech when the data used for training the AMs include one hour of 
data per accent (cf. Table 2). We observe that introducing additional information through 
a speaker or accent embedding improves the performance of the model. On average, x-
vector embeddings lead to a smaller WER than i-vector embeddings, and the best results 
are obtained with x-vector accent embeddings. The better speech recognition perfor-
mance observed on non-native English data (uttered by German speakers) compared to 
English accented data (British, Indian, and Australian accents) is likely due to a differ-
ence in acquisition conditions between Verbmobil and Voxforge, and a domain mismatch 
with respect to the LM that better matches the Verbmobil data than the Voxforge data. 

4.1.3 Evaluation on Latvian data 

Latvian, also known as Lettish, is the official language of Latvia as well as one of the 
official languages of the European Union. There are about 1.3 million native Latvian 
speakers in Latvia and 100,000 abroad. Altogether, about 2 million people speak Latvian. 
There are three main dialects in Latvian: the Livonian dialect, High Latvian and the Mid-
dle dialect. Also, the history of the Latvian language has placed it in a peculiar position 
as it is spoken by a large number of non-native speakers as compared to native speak-
ers. 

We use the Latvian speech recognition corpus [Pinnis et al., 2014] which contains about 
100 h of speech from 1,500 speakers (each having an accent label). For this evaluation 
we selected the accents that had the most examples (Russian, High Latvian and Eng-
lish). Labels for remaining accents were ambiguous and suffered from sparsity, therefore 

 
9 The results reported here (Table 3) are extracted from [Turan et al., 2020]. Due to a different 
split of the speech data, they differ from those reported in D3.2, but the behaviour of the various 
approaches is similar. 
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we combined them into a single label “Other”. We created training and test sets for AM 
training using disjoint sets of speakers (cf. Table 4). 
 
Table 4: Statistics of the data from TILDE’s Latvian speech recognition corpus used for 

training and evaluating the AMs. 

Accent 
Training Split Test Split 

# of Spk. Dur. (h) # of Spk. Dur. (h) 

Native 1280 82.9 9 1.0 

Russian 75 6.4 5 0.6 

High Latvian 66 4.7 10 0.6 

English 7 0.6 5 0.6 

Other 57 1.6 4 0.1 
 

Table 5 presents the WER obtained on native, non-native, and accented Latvian data. 
The three types of embeddings (i-vector, x-vector speaker, and x-vector accent) lead to 
similar performance, and the improvement with respect to the baseline (i.e., no embed-
ding) is negligible compared to what was observed on the English data in the previous 
experiment. It is worth mentioning that the error rates observed on non-native Russian 
speech samples are a bit smaller than those observed on native speech samples. Also, 
the error rates on the accented data (High Latvian), and on the non-native data (English) 
are not very far from those observed on native Latvian speech. This is a good point for 
speech-based applications as it seems to indicate that all categories of speakers are well 
recognised. Further investigation of the Latvian data, as well as analysis of these ap-
proaches on some other languages, would be useful. However, there are very few ac-
cented and non-native speech corpora available. 
 
Table 5: WERs (%) achieved with different embeddings on native, accented, and non-

native Latvian data. 

Embedding model Russian High 
Latvian English Other Average  

Test Native 

No embedding 28.6 32.8 31.5 36.8 31.0 30.3 

i-vector (speaker) 27.9 32.2 31.2 36.0 30.0 28.8 

x-vector speaker 27.8 32.7 31.6 36.5 30.5 29.5 

x-vector accent 28.5 32.7 31.8 35.6 30.5 29.1 

4.2 Language model adaptation 
STT LMs are typically trained on large text corpora from domains that are as similar as 
possible with the target domain. When there is a domain mismatch between the training 
data and the actual application domain, this results in lower STT performance. LM ad-
aptation aims to adjust the parameters of any LM, using a limited amount of adaptation 
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data that represents the target domain, so that it performs better on that target domain 
[Bellegarda, 2004; McGraw et al., 2016]. 

In the COMPRISE framework (cf. Figure 1), the text data that is collected on the COM-
PRISE Cloud Platform has been anonymised via a text transformation. Consequently, in 
this deliverable we focus on adapting an initial LM trained on anonymised data (cf. Figure 
2, Stage - 2) using a limited amount of original (non-anonymised) data, that would be 
typically stored on the user’s device or their COMPRISE Personal Server. 
 

 
Figure 2: Privacy-preserving text transformation, training of initial LMs on anonymised 

data, and adaptation using limited amounts of non-anonymised data. 

4.2.1 Adapting language models initially trained on anonymised data 

An LM provides an estimate of the probability 𝑃(𝑤$|ℎ$) of a word 𝑤$ knowing the his-
tory (previous words) ℎ$. These estimates allow the probability of a given sequence of 
𝐾 words, 𝑤$	(1 ≤ 𝑘 ≤ 𝐾) to be computed via the general expression 

𝑃(𝑤-, . . . , 𝑤0) =2𝑃(𝑤$|ℎ$).
0

$3-

 

This expression can be approximated using a Markovian assumption, i.e., ℎ$ =
𝑤$456-, . . . , 𝑤$4-, to obtain an N-gram LM. 

LMs are typically estimated on a large text corpus. Then, if needed, they are adapted to 
the target domain using a limited amount of adaptation data from the target domain. The 
specific settings within COMPRISE will be explained in the following section. 

Figure 2 illustrates the processing of the text data, the training of initial (generic) LMs 
and their adaptation to the target domain. Stage 1 corresponds to the privacy-preserving 
text transformation which is applied on the text data before sending it to the COMPRISE 
Cloud Platform. Stage 2 corresponds to the training of the initial generic LMs using the 
transformed (i.e., anonymised) text data. This training will typically be carried out on the 
COMPRISE Cloud Platform. Stage 3 corresponds to the adaptation to the target domain 
using a limited amount of original (non-anonymised) text data. 

For more details concerning privacy-preserving text transformations, refer to Section 2 
above and to Deliverable D2.1 (Submitted to the European Commission on August 31, 
2019 − Public).10 In the experiments below, we have considered four categories of 

 
10 https://www.compriseh2020.eu/files/2019/08/D2.1.pdf 
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Named Entities, namely persons (PER), organisations (ORG), locations (LOC), and mis-
cellaneous information such as date or time (MISC), and anonymisation has been per-
formed using the word-by-word replacement approach. 

Several types of LMs are investigated and combined: a conventional N-gram word-based 
model, an N-gram class-based model, and a neural network-based model. These mod-
els are first trained on the anonymised data, then adapted using a limited amount of non-
anonymised data, and finally combined. 

Conventional N-gram word-based language model 

N-gram LMs look at the previous 𝑁 − 1 words to predict the N-th word in a sequence, 
based on (smoothed) counts of N-grams collected from training data. In the case of bi-
grams (i.e., 𝑁 = 2), the probability of a sequence of words is given by 

𝑃(𝑤) = 𝑃(𝑤-,… ,𝑤0) = 𝑃(𝑤-)2𝑃(𝑤$|𝑤$4-).
0

$3;

 

Such LMs are rather simple, but very effective for STT applications. 

In the experiments reported below (in section 4.2.2), we will use trigrams (i.e., 𝑁 = 3) 
and directly train the generic N-gram word-based model from the anonymised data. 

N-gram class-based language model 

Class-based N-gram models rely on an N-gram LM over word classes, and on the prob-
ability of individual words inside each class. If we consider non-overlapping classes and 
a bigram LM over the classes, the probability of a sequence of words is given by 

𝑃(𝑤) = 𝑃(𝑐-)	𝑃(𝑤-	|	𝑐-)	2𝑃(𝑤$|𝑐$)	𝑃(𝑐$|𝑐$4-)
0

$3;

 

where 𝑃(𝑤$	|	𝑐$) is the probability of word 𝑤$ inside class 𝑐$, and 𝑃(𝑐$	|	𝑐$4-) is the 
probability of class 𝑐$ given the preceding class 𝑐$4-. 

In the experiments reported below (in Section 4.2.2), we consider a few “real” classes 
corresponding to Named Entities, such as persons (PER), organisations (ORG), and 
locations (LOC). The remaining words that are not associated with Named Entities are 
treated as degenerated classes, i.e., classes reduced to a single word. 

Since the Kaldi speech recognition toolkit11 used for the STT experiments relies on Finite 
State Transducers (FSTs), a class-based LM can be built and used in the first decoding 
pass via FST composition. Four different FSTs are involved: H which defines the hidden 
Markov models through a mapping of transition-ids into context-dependent phones; C 
which maps context-dependent phones into context-independent phones; L which spec-
ifies the lexicon through a mapping of phone sequences into words; and G which is an 
acceptor (input and output symbols are the same) for encoding the LM. The final decod-
ing graph is obtained after determinisation and minimisation of the combined FST de-
noted as HCLG. A class-based LM is obtained by composing the FST representing the 
N-gram over the classes with the FSTs representing the words inside individual classes 
(i.e., one FST per Named Entity class). 

 
11 https://kaldi-asr.org  
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The process consists in first creating the FST corresponding to the N-gram of classes. 
The following graph12 shows a toy example with two words (“to” and “from”) and a class 
(‘LOC’): 

 

 
Then a simple FST is created for each class. The followings graph shows an example 
for the class “LOC” (location): 

 

The composition of the FST representing the N-gram of classes with the FST associated 
with each class leads to the G graph that will be used by Kaldi: 

 

Neural network-based language model 

Neural network based LMs are now popular, and lead to efficient modelling when trained 
on large datasets. The recurrence of neural network models allows to take into account 
contexts that are longer than the 𝑁 − 1 words of the conventional N-gram models. 

In the experiments reported below (in Section 4.2.2), we will use long short-term memory 
(LSTM) based LMs [Sundermeyer et al., 2012] that have proved to be efficient for such 
tasks. 

Adaptation of language models 

LMs can be adapted using a small amount of target domain data, as indicated in Figure 
2, Stage-3. In the reported experiments, adaptation is catered by using original (non-
anonymised) text data. 

For what concerns the N-gram models, we follow the idea of marginal adaptation that 
was proposed in [Klakow, 2006] and outperformed linear interpolation. This combines 
the unigram and trigram information based on the fast marginal adaptation idea [Kneser 
et al.,1997]. The adapted probability values 𝑃>?>@AB?(𝑤|ℎ) are obtained by scaling the 
probability values 𝑃CBDBEFG(𝑤|ℎ) of the generic model (trained from anonymised data) as 

 
12 ‘<eps>’ is not a real word. It actually means “no symbol here”, i.e., no output for the corre-
sponding arc. 
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𝑃>?>@AB?(𝑤|ℎ) =
1

𝑍(ℎ)
I
𝑃>?>@A(𝑤)
𝑃CBDBEFG(𝑤)

J
K

	𝑃CBDBEFG(𝑤|ℎ) 

where 𝛽 is a weighting parameter, 𝑍(ℎ) is a normalisation term, 𝑃CBDBEFG(𝑤) is the uni-
gram probability of the generic model, and 𝑃>?>@A(𝑤) is the unigram probability esti-
mated on the adaptation data. Therefore, this adaptation scales the probability of certain 
words up or down depending on whether they are more or less frequent in the adaptation 
data than in the initial training data (generic model). 

The neural network based LM trained on the anonymised data is adapted through fine-
tuning [Ma et al., 2017]. As transfer learning becomes easier and more effective with 
high-level abstract features [Wang and Zheng, 2015], only the last layer (softmax layer) 
of the neural network model is fine-tuned on the adaptation data in the experiments re-
ported below. 

Interpolation of language models 

LMs can be used individually, or combined as indicated in Figure 2, Stage-3. The com-
bination of several LMs is based on the conventional linear interpolation: 

𝑝(𝑤|ℎ) =N𝜆P𝑝P(𝑤|ℎ)
P

. 

N-gram approximation of neural network language models 

The current version of Kaldi cannot use a neural network LM in the first decoding path. 
Hence, we have created an N-gram approximation of the neural network LM to be able 
to use it in the first pass decoding. In [Adel et al., 2014], several approximation tech-
niques are presented. In the reported experiments, we used the probability-based con-
version technique which provided good performance in [Singh et al., 2017]. For every 
word 𝑤Q of the training corpus (here, anonymised dataset), and associated history ℎ 
corresponding to unigram, bigram, and trigram, we extract the neural-based LM proba-
bility 𝑦(𝑤Q|ℎ). Then, these values are averaged (if multiple occurrences of (𝑤Q|ℎ)) and 
normalised to obtain a probability distribution: 

𝑝(𝑤Q|ℎ) =
𝑦(𝑤Q|ℎ)

∑ 𝑦(𝑤$|ℎ)TU
. 

4.2.2 Experimental setup 

In this deliverable, we evaluate LM adaptation schemes using the Augmented Multiparty 
Interaction (AMI) corpus containing multi-hour meeting recordings. These meetings were 
recorded as part of the AMI/AMIDA projects13 by the University of Edinburgh and Idiap. 
The AMI Meeting Corpus is a collection of data captured in specially instrumented meet-
ing rooms, which record the multimodal signals (audio and video) for each participant. 
This corpus contains both scenario and non-scenario meetings. In the scenario meet-
ings, four participants play the role of a design team composed of a project manager, a 
marketing expert, a user interface designer, and an industrial designer. The meeting is 
supervised by the manager who follows an agenda with several items to be discussed 
with the other speakers. The non-scenario part corresponds to about two-thirds of the 

 
13 http://www.amiproject.org 
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data, and consists of samples of “real” meetings. The corpus is manually transcribed at 
different levels and we use the NITE XML Toolkit14 to manage the annotations. 

We partition the AMI data into training, adaptation, and test sets ensuring that no speaker 
appears in more than one set. Also, we only use speech data recorded with individual 
headsets. The following table presents some statistics of the data. The average length 
of the utterances is 7.5 words. 
 
Table 6: Some statistics of the training, adaptation and test sets from the AMI corpus. 

Set Duration 
(min) Utterances 

Number of words 

Unique Occurrences 

Train 4,880 108,221 11,882 802,604 

Adaptation 580 13,059 4,145 94,914 

Test 531 12,612 3,913 89,635 

All 5,991 133,892 13,079 987,153 
 

In this split the adaptation set represents 12% of the training data. Other splits represent-
ing 15% and 20% of the training data have been considered to investigate the impact of 
larger adaptation sets. In all cases, the test set is the same. 

We use the provided Named Entity annotations whenever available. These annotations 
adhere to AMI’s Named Entity instructions,15 which mainly follow the hierarchical struc-
ture of the NIST task definition [Chinchor et al., 1999], but they are not available for all 
subjects or meetings. Therefore, the Named Entities in the remaining subjects or meet-
ings are found using the open-source software spaCy,16 which comes with pre-trained 
pipelines. After combining the pre-annotated AMI entities and spaCy extracted ones, we 
obtained 2,167 unique Named Entity tags including 226 LOC, 489 PER, 515 MISC, and 
937 ORG. 

During the experimental evaluation, we use WER and perplexity (PPL) as objective met-
rics. We also present statistical tests for deciding whether differences in error rates com-
pared to the baseline model are significant. The “sc_stats” tool from NIST17 is used to 
compute the matched pairs sentence-segment word error (MAPSSWE) test. This is a 
parametric test that looks at the numbers of errors occurring in units (segments of utter-
ances) of varying sizes. MAPSSWE is essentially a t-test for estimating the mean differ-
ence of normal distributions with unknown variances [Gillick and Cox, 1989]. 

For the reported experiments, the AM was based on Kaldi’s time-delay neural network 
(TDNN) chain architecture.18 The TDNN-based AM operates on 40-dimensional Mel fre-
quency cepstral coefficient (MFCC) features extracted from frames of 25 ms length and 
10 ms stride and is similar to the model specified in [Peddinti et al., 2015]. The speed-

 
14 http://groups.inf.ed.ac.uk/nxt 
15 http://groups.inf.ed.ac.uk/ami/corpus/Guidelines/NamedEntityInstructions.pdf 
16 https://github.com/explosion/spaCy 
17 https://github.com/usnistgov/SCTK 
18 https://kaldi-asr.org/doc/chain.html 
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perturbation technique of [Ko et al., 2015] is used with a 3-fold augmentation where cop-
ies of training data are created according to factors of 0.9, 1.0, and 1.1. 

4.2.3 Results 
The individual LMs used are the following: a 3-gram word-based model, a 3-gram class-
based model, a 3-gram approximation of the neural network based model, and finally 
rescoring of the word lattice hypotheses resulting from first-pass decoding using a 3-
gram word-based LM with the neural network LM. 

Baseline results 

We first evaluated the performance of the individual generic LMs trained over the anon-
ymised input text at Stage-2 of Figure 2. These results can be regarded as our baseline 
performance. Table 7 shows the corresponding WER and PPL over the (untransformed) 
test data. For these WERs, the 95% confidence interval is equal to ±0.3%. 
 

Table 7: Baseline performance obtained with individual LMs trained on anonymised 
data. 

Model WER [%] PPL 

3-gram word-based LM 32.3 121 

3-gram class-based LM 30.2 103 

3-gram approx. neural-network LM (1st-pass dec.) 32.9 137 

Neural-network LM (2nd-pass rescoring) 30.5 103 
 

The best results are obtained using either the class-based LM, or through rescoring with 
the neural-network LM. 

Topline results 

Table 8 presents the results using LMs trained on the original data, i.e., before apply-
ing the anonymisation process. These results can be regarded as our topline, and help 
understand the impact of anonymisation and how much of it is recovered through the 
proposed adaptation approaches. 
 

Table 8: Topline performance obtained with individual LMs trained on original data. 

Model WER [%] PPL 

3-gram word-based LM 28.8 82 

3-gram class-based LM 29.3 74 

3-gram approx. neural-network LM (1st-pass dec.) 29.1 88 

Neural-network LM (2nd-pass rescoring) 27.6 73 
 

Compared to Table 7, we see a large difference in the WERs achieved with the 3-gram 
word-based models. Estimating the 3-gram word-based model on anonymised data 
leads to a 10% relative WER degradation, compared to training it on original data. The 
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best results are obtained when a second pass is applied for rescoring hypotheses with 
a neural network LM, but this increases the computational requirements, and induces an 
extra delay before getting the STT output. 

Adding limited amounts of original data to the anonymised training data 

We now measure the benefit of adding limited amounts of original data to the large 
set of anonymised data for training the LMs. Results are reported in Table 9 and show 
improvements for each type of modelling, and obviously, compared to the baseline mod-
els (Table 7), the WER gets smaller when the amount of additional non-anonymised data 
gets larger. The improvements are usually considered as statistically significant when 
the p-value (that results from a statistical test) is below 0.05. 
 

Table 9: Performance obtained when adding limited amounts of original data to the 
anonymised training set for training the LMs. 

Model 
12% Adapt. Data 15% Adapt. Data 20% Adapt. Data 

WER PPL p-val WER PPL p-val WER PPL p-val 

3-gram word-based LM  31.9 116 .008 31.4 107 .003 29.6 90 .014 

3-gram class-based LM 30.2 96 .026 29.8 93 .012 29.3 84 .019 

NN LM (3-gram approx.) 31.4 106 .034 30.5 101 .062 29.9 92 .027 

NN LM (2nd-pass) 30.3 98 .019 30.0 94 .041 29.5 81 .058 
 

Adaptation of language models using limited amounts of original data 

We also evaluate the benefit of adapting LMs initially trained on a large set of anony-
mised data by using a limited amount of original data. Results are reported in Table 
10. The larger the adaptation set, the better the performance. For the smallest size con-
sidered here, the WERs achieved with the LM adaptation procedure are smaller than 
those achieved when the same amount of non-anonymised data is directly used in addi-
tion to the anonymised training set in a conventional LM training procedure (cf. Table 9). 
 
Table 10: Performance obtained when adapting the LMs with limited amounts of origi-

nal data. 

Model 
12% Adapt. Data 15% Adapt. Data 20% Adapt. Data 

WER PPL p-val WER PPL p-val WER PPL p-val 

3-gram word-based LM  31.5 109 .004 31.2 98 .022 31.0 93 .031 

3-gram class-based LM 29.9 94 .017 29.8 91 .044 29.7 86 .012 

NN LM (3-gram approx.) 30.8 101 .038 30.6 94 .025 30.3 90 .057 

NN LM (2nd-pass) 30.1 95 .042 29.9 91 .011 29.8 85 .009 
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Interpolation of adapted language models 

Finally, we evaluate the benefit of interpolating several adapted LMs obtained using 12% 
of adaptation data. The results are reported in Table 11. We first merge the 3-gram class-
based and the 3-gram word-based LMs with the best weight combination: 𝜆VWE?XY = 0.3 
and 𝜆G[>\\XY = 0.7. Then, we interpolate with the neural network LM. The final mixture 
LM is obtained as 0.6 × (𝜆VWE?XY × 𝑃VWE?XY + 𝜆G[>\\XY × 𝑃G[>\\XY) + 0.4 × 𝑃bBcE>[XY. 
 

Table 11: Performance obtained when linearly interpolating the adapted LMs. 

Model WER PPL p-value 

3-gram word based + 3 gram class-based 29.7 95 .006 

+ NN LM (3-gram approx. in 1st pass) 29.6 92 .037 

+ NN LM (2nd-pass) 29.4 86 .021 

4.3 Discussion and conclusion 
For what concerns AM personalisation for STT, the introduction of speaker or accent 
embeddings along with the conventional spectral features proved to be efficient for deal-
ing with accented and non-native English data, and the best performance was obtained 
using the proposed x-vector accent embedding. The new results reported in this deliver-
able on accented and non-native Latvian data show very small improvements when add-
ing speaker embeddings, much smaller than the ones observed on English data. Further 
experiments on other languages or datasets would be useful to draw conclusions. 

The second topic investigated for STT concerns the LM adaptation. Indeed, in the COM-
PRISE framework the initial LMs are trained from text data that has been anonymised. 
The experiments reported above show that using some original data helps improve the 
quality of these LMs, which translates into a smaller WER. Neural network LMs lead to 
good performance when used in a second pass decoding for rescoring lattices of word 
hypotheses. Using a 3-gram approximation of the neural network LM allows for its use 
in the first pass decoding, but loses the benefit of handling long histories. Combining 
several LMs leads to a further improvement of the speech recognition performance. The 
fact that the neural network LMs (used for lattice rescoring) yield perplexities that are not 
much better than those of the class-based LMs might be due to the limited amount of 
data available for training the models. 

From a practical point of view, the 3-gram class-based LM yields good speech recogni-
tion performance, even for the initial model trained from anonymised data. Note that this 
class-based LM leads to a baseline WER of 30.2%, which is more than halfway between 
the baseline WER yielded by the 3-gram word-based model trained on anonymised data 
(32.3%) and the topline WER yielded by the same model trained on original data 
(28.8%). Few classes of words are used, which corresponds to the Named Entities that 
have been modified in the anonymisation process. A small improvement can be achieved 
by adapting this model using some original data, however the gain is limited and the 
amount of data needed is rather large for being provided by a single user. Although the 
WER reduction is statistically significant (p-value: 0.017), this limited improvement might 
not be noticed by the user of a voice-enabled application. 

In addition, when we examine the proposed LMs in terms of computational complexity, 
we see that class-based LMs are an acceptable option. Although neural-based LMs can 
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outperform them in terms of WER and PPL, they require two-pass decoding and a bigger 
computational effort and bigger data for an effective solution. The proposed class-based 
LMs attain decent performance and are not more complex than the traditional N-gram 
LM training. Moreover, they can be used directly in single-pass decoding. 

5 Model personalisation strategy for SLU and DM 
In this section, we consider the SLU and DM components of COMPRISE. Similarly to 
Section 4 for STT, we investigate whether small amounts of original, user-specific data 
can be leveraged to improve SLU and DM models trained on privacy-transformed data. 
The intuition is that such transformations will likely have a negative impact on the perfor-
mance of the resulting models since the similarity between the training data and the test 
data reduces after it was transformed. 

We examine two representative tasks: Named Entity Recognition (NER) for SLU and 
intent detection for DM. These tasks were chosen because, while they both operate on 
sentences as input, one is a sequence labelling task and the other, a sentence classifi-
cation task. We present an extensive number of experiments using multiple datasets. 

5.1 Context: Privacy-preserving text transformations 
Given the different anonymisation strategies listed in Section 2, we are interested in how 
transforming text data prior to their use for training impacts the performance of the re-
sulting machine learning models. For SLU, we focus on the NER task because of its 
immediate relevance to privacy preservation. 

To measure the impact of a small amount of original, user-specific data, we start out with 
an idealised setting in which there are no computational constraints on the user’s side to 
train models. To a certain degree, this is an unrealistic assumption: today, many state-
of-the-art Natural Language Processing models have extensive requirements in terms of 
computational resources (e.g., GPUs and memory) as well as for training time and power 
consumption. While such requirements will certainly be within reach for the COMPRISE 
Personal Server setup in the near future, they are currently prohibitive as on-device so-
lutions for current mobile devices. However, as a lab condition, this setup provides us 
with an upper bound in terms of what could be achieved. 

Our experimental setup is thus as follows. We combine transformed and original (a.k.a., 
personal) data at various ratios in order to derive a better understanding of the effect that 
original data can have on a model. This raises a practical issue, though: in a real-life 
situation, all original data would be from the same user (hence “personalisation”) but this 
is not easy to replicate using available datasets, since user information is not always 
provided. It is therefore interesting to study whether small amounts of original data from 
different users lead to similar outcomes as small amounts of original data from a single 
user. This motivated the inclusion of the Verbmobil dataset into the SLU experiments, 
since it provides user information unlike the other datasets. 

5.2 Personalisation for spoken language understanding 
5.2.1 Datasets 

For SLU, we evaluate the NER performance using two different corpora: Verbmobil and  
WNUT2016 [Strauss et al., 2016]. The Verbmobil corpus contains dialogues in different 
languages. Here, we only use the English portion of the dataset, which contains 726 
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dialogues between two speakers each. The same speakers may partake in multiple dia-
logues, and so the number of unique speakers is 302. As Verbmobil does not come pre-
annotated with Named Entity labels, about 20% of the dataset was annotated via 
crowdsourcing while the remaining 80% was first labelled automatically using spaCy and 
then post-corrected manually. The labels used are DATE, LOC, ORG, PER, TIME. After 
pre-processing and filtering, there are 28,052 annotated utterances in the dataset. 

The WNUT2016 corpus is a collection of 7,251 tweets collected from Twitter.19 The data 
is split in training/development/test splits of sizes 2,395 / 1,000 / 3,856, respectively. Its 
annotation is based on the following labels: company, facility, geo-loc, movie, musicart-
ist, other, person, product, sportsteam, tv show. 

5.2.2 Experiments 

Because of its versatility and ease of use, even for non-expert users, we base our ex-
periments on BERT [Devlin et al., 2019]. Different versions were used for the two sets of 
experiments: we used BERT-base-cased for the Verbmobil experiments, and BERT-
large-cased for WNUT2016. For each of the described experimental conditions, the train-
ing data was used to fine-tune the model. 

For the Verbmobil experiments, we set aside as our test set 400 utterances by the 5 
users with the largest number of utterances in the dataset. The remaining utterances of 
these users form the pool from which we select different amounts of samples as the 
original (untransformed) portion of the training set, depending on the specific experi-
mental condition. The utterances of all other users are processed using the COMPRISE 
Text Transformer and serve as the transformed portion of the training set. The transfor-
mation strategies considered here are Redact, Word-by-word replacement, and Full en-
tity replacement. 

Figure 3 displays the classification F1-scores for three speakers of the test set; the gen-
eral trend is the same for all. The transformed portion of the training set remains the 
same for each experimental condition, the different bar plots for each speaker differ from 
each other in the number of original per-speaker samples that were added to the trans-
formed portion for training. Each block of bars includes a topline (displayed in purple) for 
which the full training set was used without any transformation; in COMPRISE, this con-
dition would not normally be available as all collected data undergoes a transformation 
before leaving the user’s device or the COMPRISE Personal Server. In addition, we also 
show in blue how training only on the small amount of per-user original data (without 
using any transformed data) fares for the different amounts of original data considered. 
The leftmost block of bars for each speaker shows the outcome of using only transformed 
data for training. 

Across all considered experiments, two aspects stand out. First, the Full entity replace-
ment strategy in red is only minimally affected by the absence of user-specific data (see 
the left-most block of bars for each speaker), as the red bar is almost on par with the 
topline. As a matter of fact, adding a limited amount of original data does not lead to an 
improvement for that strategy. A similar behaviour albeit with a slightly lower F1-score 
can be observed for the Word-by-word replacement strategy in green. 

 
19 https://twitter.com 
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Figure 3: NER results achieved on the Verbmobil corpus by adding a limited amount of 
original data from one of three speakers (NKH, PNP, or VLM) to the transformed train-
ing data. For comparison, the topline performance achieved by training on original data 

only is shown in purple. 

 
In contrast, the Redact condition fails with a F1-score of zero when only transformed 
data are in the training set (note the missing yellow bar in the left-most blocks of bars: 
the F1-score for the Redact strategy is 0 in that condition for all speakers). Recall that 
this strategy replaces all occurrences of private information with the same replacement 
token, independent of the Named Entity type, basically removing the most important in-
formation for the classification. At the same time, since the test set is untransformed, the 
replacement token never appears at test time, and so the model fails to recognise not 
only the type of Named Entity, but the presence of any Named Entity at all. 
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The WNUT2016 corpus presents a much more challenging task for NER because of its 
Twitter origin. Given the strict character limit of tweets, users commonly resort to using 
non-standard language, especially abbreviations. State-of-the-art pre-trained LMs are 
typically trained on standard language data, and this data mismatch is known to be prob-
lematic. Figure 4 shows the results of a number of different experimental conditions over 
the transformation strategies: Redact, Typed placeholder, Named placeholder (Exem-
plar), and Full entity replacement. As a topline, two conditions using only original data 
are included as well. 

 

Figure 4: NER results (F1-score) achieved on the WNUT2016 corpus for different data 
splits. 

 

The first observation is that the overall F1-scores achieved even in the topline conditions 
are much lower than for the Verbmobil dataset. As discussed above, this is likely due to 
the vocabulary and grammar mismatch between the data used to train BERT and the 
WNUT2016 data. 

We note again that using only transformed data takes a large toll on the performance of 
the model, as witnessed by the 0% / 100% and 0% / 90% conditions. For the sampling 
condition, the former condition failed to train a useful model, while the latter did, likely 
hinting at a technical issue rather than a methodical one. 

We also see that, like for Verbmobil, the Full entity replacement strategy proves to be 
the most robust against lack of original data. Adding personal data helps in all conditions, 
however, the amount of data required to reach acceptable performance is rather high: 
adding 10% original improves the performance only moderately in all conditions except 
Full entity replacement. This fact puts a question mark behind the general feasibility of 
personalisation based on single-user data alone. 
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5.3 Personalisation for dialogue management 
5.3.1 Datasets 

For DM, we evaluate the intent classification performance using two primary datasets: 
ATIS-2 [Hemphill et al., 1990] and the SNIPS intent classification dataset [Coucke et al., 
2018]. Table 12 includes a break-down of the most relevant statistics of these datasets, 
divided between training, development, and test sets. 

Table 12: Corpus statistics for ATIS-2 and SNIPS. 

 ATIS-2 SNIPS 

 Train Dev. Test Train Dev. Test 

#Samples 4,478 500 893 13,084 700 700 

#Labels 17 14 15 7 7 7 

Vocabulary size 867 463 448 11,421 1,571 1,624 

Avg. sentence length 11.28 11.41 10.26 9.00 9.12 9.08 

Most frequent label 3,328 359 645 1914 100 124 

Least frequent label 1 0 0 1818 100 80 

Label counts (mean) 263.41 35.71 59.53 1,869.14 100 100 

Label counts (std. dev.) 796.27 93.69 162.63 32.46 0.0 15.0 
 

ATIS-2 presents several distinct advantages: it is an established and heavily researched 
dataset which makes it an excellent benchmark for performance tests. It does, however, 
have a few notable characteristics. 

First, the items in the corpus were not obtained through interactions with an automated 
system but through a “Wizard of Oz” experiment in which human agents provided re-
sponses to the users. Although the users phrased their own queries (instead of reading 
from a script), the items in the corpus were transcribed by one of the “Wizards”, removing 
disfluencies and interpreting the query to provide a transcription of what the users meant 
to say. 

Second, the dataset is relatively small; comprising only 5,871 items in the training, de-
velopment, and test sets combined. The small number of samples is opposed by a rela-
tively large number of class labels (17). The label distribution is also rather imbalanced: 
across all three sets, a single label, a request for flight information, makes up for the vast 
majority of the annotations (74% of the total size). 

In contrast, the SNIPS dataset is larger, and it has fewer labels which are distributed 
more evenly across the data points. There is also more linguistic variation in the speaker 
turns. Since ATIS-2 and SNIPS contrast with one another in a number of ways, similar 
performance between the two datasets would suggest that the results are somewhat 
agnostic to the particular differences between them. 

Unfortunately, both ATIS-2 and SNIPS do not provide user labels. For our experiments, 
we thus randomly selected a portion of the training set to remain untransformed, with the 
rest of the training set being transformed, in order to simulate the split between cloud 
data and local user data. These splits are identified by their proportion of original data to 
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transformed data. For instance, if an experiment uses as training data a mix of 10% 
original data with the remaining 90% being transformed, it is referred to as a 10% / 90% 
split. 

5.3.2 Experiments 

Our experiments for intent classification are based on a Bi-LSTM architecture, as dis-
played in Figure 5. The input is fed first into an embedding layer using GloVe 100d em-
beddings [Pennington et al., 2014] to encode the input into word vectors. The encoded 
vectors are then passed on to the Bi-LSTM layer. The outputs of the forward and back-
ward passes of the Bi-LSTM are concatenated and passed to a fully-connected layer. 
The estimated label is the argmax over these outputs. 

 

Figure 5: Neural network architecture used for the intent classification experiments. 

 
The network was trained with a batch size of 32 for 8 epochs, using the Adam optimiser 
and the cross-entropy loss. 

Figure 6 shows an overview of the performance of a number of different splits across 
four text transformations on ATIS-2 data. A topline on 100% original data is given in black 
at the top of the figure. A baseline in grey also uses only original data but utilising only 
10% of the full training set. This is akin to using only personal data (at the same amount 
as the lowest actually mixed split), which of course does not constitute a realistic situation 
but serves solely as a comparison. Increasing the amount of original data beyond 20% 
does not result in further improvements. 
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Figure 6: Intent classification results (F1-score) obtained using different original/trans-
formed splits as training data, for a topline, a baseline, and four privacy-preserving text 

transformation strategies over the ATIS-2 dataset. 
 

The Full-entity replacement condition performs almost equally well for all tested condi-
tions, which can be explained by the fact that this text transformation results in the most 
natural transformed text, as private words are replaced by randomly sampled words of 
the same type. In fact, there is no significant difference between that condition and the 
topline, even when no personal data is used at all. 

 

Figure 7: Intent classification results (F1-score) achieved using different original/trans-
formed splits as training data, for a topline, a baseline, and four privacy-preserving text 

transformation strategies over the SNIPS dataset. 
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Results for experiments using the SNIPS dataset are included in Figure 7. In comparison 
to the ATIS-2 results, there are two notable differences. The first is that the performance 
drop from removing 90% of the data is less substantial, differing only by .020 points of 
F-score (from .972 to .952). 

The second major difference is that the difference observed in the Redact, Typed place-
holder, and Named placeholder conditions across the different splits is much more pro-
nounced, with far higher variance than for ATIS-2. The cause of this phenomenon is still 
unclear, and further research will be required to investigate it. 

However, there are also clear similarities between both sets of experiments. As for ATIS-
2, we observe a significant performance boost when 10% of the training data are original 
in the Redact, Typed placeholder, and Named placeholder conditions, and additional 
original data does not continue this trend. More importantly, the Full-entity replacement 
condition performs, as before, robustly even when only transformed data are used for 
training. 

5.4 Discussion and conclusion 
The experiments for both SLU and DM show a similar trend: for the transformations Re-
dact, Typed placeholder, and Named placeholder, including some original data in train-
ing improves the final result. However, to reach a performance as good as in the Word-
by-word replacement or Full entity replacement conditions, the amount of additional data 
required might be too high to be realistically provided by a single user. 

At the same time, these two sampling transformations do not even exhibit any relevant 
drop in performance, even when no personal data at all is provided during training. This 
observation is not unique to the experiments described above. As a matter of fact, we 
have shown that this effect holds for a number of additional tasks across multiple corpora 
in [Adelani et al., 2020]. 

There is no significant difference between using a small set of data only from a single 
user or from a mix of users. Where additional data can make a difference at all, it seems 
that it is more relevant for the additional data to be original. 

The NER task on the WNUT2016 Twitter corpus has produced slightly worse results 
across all experimental conditions. This is likely due to the stylistic specificities of Twitter 
data. Unlike all other corpora, even the sampling conditions show a noticeable degrada-
tion when trained without or with only a small amount of personal data. However, since 
COMPRISE is targeting voice applications and not microblogging services, effects re-
lated to the typical grammar and vocabulary of the latter are unlikely to surface in the 
kind of applications COMPRISE seeks to support. 

All of the experiments described here were done in “lab conditions” insofar as they com-
bined transformed and original data and trained each model on the combined dataset. 
For the COMPRISE architecture, this setup is, of course, unrealistic as it would put a 
high burden on the user's device in terms of computational resources (e.g., GPU, 
memory and energy requirements). Alternatively, a common way to combine a large da-
taset (here: transformed data) with a small dataset that is more closely related to the 
target domain (here: personal data) is to train a base model on the former which is then 
fine-tuned on the latter. This would be a better match for personalisation in COMPRISE, 
where the base model could be trained on the COMPRISE Cloud Platform and only the 
fine-tuning would be done on the user's device or Personal Server. We therefore tested 
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this approach on the Verbmobil corpus, but found the results to be comparable to the 
simpler setup that was followed here. 

In summary, our results give a clear recommendation for using one of the sampling-
based text transformations, in which case additional personalisation is unnecessary for 
the SLU and DM tasks considered here. 

6 Software libraries 

6.1 Speech-to-Text 
6.1.1 Acoustic model personalisation 

The AM personalisation library is mainly identical to the one provided in Deliverable D3.2 
except for the extraction of accent embeddings. In this version, the embeddings are ob-
tained from all previous utterances of a given user. This version also provides a more 
refined code structure. Before starting, make sure that you have completed the following 
prerequisites: 

- Modify the symbolic links steps, utils, and sid to point to the egs/wsj/s5/steps, 
egs/wsj/s5/utils, and egs/sre08/v1/sid folders, respectively, under your Kaldi in-
stallation. 

- Also modify the content of cmd.sh and path.sh according to your needs and run-
ning environments. Make sure that the KALDI_ROOT and SRILM variables are 
pointing to the correct directory structure based on your Kaldi installation. 

Step 1. Data Preparation 

- In this first step, Kaldi-related files such as lexicon, spectral features, and LM are 
prepared. Check the documentation to learn more about data preparation in Kaldi: 
https://www.kaldi-asr.org/doc/data_prep.html. Examples can be found in the 
AM_personalization/local/data_preparation.sh script. 

Step 2. Preparation for Embedding Training 

- This step performs feature extraction, silence removal, mean-variance normalisa-
tion as well as speaker modification for accent embedding training. Some sample 
implementations can be found in the AM_personalization/local/prepare_ac-
cent_data.sh script. 

Step 3. Train Embedding Model 

- After the data preparation stages, we can start to train the embedding network. 
Note that this stage requires GPU usage. To enable multi-GPU settings, don't 
forget to configure the execution mode: sudo nvidia-smi -c 3. Then, run the training 
script AM_personalization/local/train_xvector.sh followed by the AM_personaliza-
tion/local/extract_xvector_embeddings.sh script for extraction. 

Step 3. Train and Decode Acoustic Model 

- The extracted embeddings can now be used as auxiliary inputs for AM training. 
Run AM_personalization/local/train_gmm_hmm.sh first for traditional GMM/HMM 
training and alignment. Then, run AM_personalization/local/train_chain_model.sh 
for neural AM training, and AM_personalization/local/decode_test_samples.sh for 
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the corresponding decoding. Note that AM training also requires GPU usage, 
while decoding can be performed over the CPU. 

6.1.2 Language model adaptation 
The LM adaptation library implements the proposed personalisation strategies for LM 
adaptation. Its major components are designed to match built-in Kaldi tools and binaries. 
However, for the neural-based LM design, the open-source machine learning framework, 
PyTorch,20 is utilised. Classical LM operations like N-gram training or linear interpolation 
are performed using the SRILM toolkit21 which provides fast and lightweight calculations. 
The installation and usage instructions of this library are summarised below. 

Prerequisites 

- Ensure that you have a working Kaldi installation, if not refer to Kaldi’s official 
repository: https://github.com/kaldi-asr/kaldi. Then, modify the steps and utils 
symbolic links inside the main directory to point to the egs/wsj/s5/steps and 
egs/wsj/s5/utils folders, respectively, under your Kaldi installation. 

- In this library, the experimental analysis is performed over the AMI dialogue cor-
pus. To use another dataset, pre-process your samples using the Kaldi prepara-
tion style.22 A helper script for downloading the AMI speech samples and their 
corresponding annotations is given in local/download_ami.sh. It is also possible 
to download them directly from the AMI website.23 Note that the annotations are 
in NITE XML toolkit (NXT) format24 and require NXT version 1.4.4. 

- To prepare the data for model training, the final dataset requires three splits: 

1. Training data with anonymised annotations. A domain/application specific 
corpus is preferred for more robust models. 

2. A small amount of adaptation data with similar characteristics to the test 
data. Like the test data, it should contain original annotations. 

3. Test data whose annotations should be original (non-anonymised) text. 

- The PyTorch framework should be installed for neural LM manipulation. Note that 
scripts are organised to run individually for each component. Thus, if you are not 
going to use neural LMs, you do not need to install PyTorch. 

- For entity recognition, the spaCy library is used with pre-trained pipelines which 
can be installed as Python packages. Please visit its official page for usage and 
installation: https://spacy.io/usage/models. For English, the en_core_web_sm 
module optimised for CPU can be used for NER: https://spacy.io/mod-
els/en#en_core_web_sm. 

 

 

 
20 https://pytorch.org 
21 http://www.speech.sri.com/projects/srilm 
22 https://kaldi-asr.org/doc/data_prep.html 
23 http://groups.inf.ed.ac.uk/ami/download 
24 http://groups.inf.ed.ac.uk/nxt 
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Setup 

- For faster and efficient decoding, this library uses a “look-ahead” strategy to de-
code with runtime graph composition. This also makes it compatible with the 
VOSK library25 which provides an offline speech recognition API for mobile de-
ployment. The traditional approach for decoding is to create a huge graph from 
the LM, dictionary, and context-dependency graph and decode with a relatively 
simple decoder that just explores the best path. However, larger graphs may not 
fit the mobile platforms and limit the flexibility of the model. For this reason, our 
library rearranges the lexicon graph so that composition with the grammar can be 
done on-the-fly during decoding. This can be done by removing useless epsilon 
paths and pushing forward labels and weights along different paths. In order to 
take advantage of this cost-effective decoding, the OpenFST library must be com-
piled with the --enable-lookahead-fsts option. Download the latest version of 
OpenFST from http://www.openfst.org/twiki/bin/view/FST/FstDownload and in-
stall it: ./configure --prefix=/path/to/your/folder/openfst --enable-lookahead-fsts. 

- For main LM-related operations, the SRILM toolkit is required. Check the tools/ex-
tras/install_srilm.sh script for installation and other information located under the 
Kaldi folder. 

- Create a cmd.sh file under the experiment folder based on the running queue for 
Kaldi. If you have GridEngine installed, you should also create the queue.pl file 
with arguments specifying where GridEngine resides. 

- Prepare the path.sh file under the experiment folder which points explicitly to 
KALDI_ROOT, SRILM and OpenFST installations as well as other common paths. 

Running the library 

Step 1. Data Preparation 

- This part includes extracting AMI data alongside their pre-annotated Named Entity 
annotations. Then, Kaldi processing files for each data split (train, test, adaptation) 
are created accordingly. To see the extracted meetings for each split, please refer 
to the LM_adaptation/misc/meeting_ids folder. Language and lexicon related fold-
ers are also obtained in this step. Finally, the training data is anonymised. The 
overall pipeline can be found in the LM_adaptation/local/data_preparation.sh 
script. 

Step 2. Training TDNN-based AM 

- In this step, MFCC and i-vector features are first extracted from the training, test, 
and adaptation splits in LM_adaptation/local/feature_extraction.sh. Then, GMM-
HMM and TDNN-based AMs are trained in LM_adaptation/local/gmm_hmm_train-
ing.sh and LM_adaptation/local/chain_training.sh, respectively. Note that TDNN-
based AM training requires GPU usage. To enable multi-GPU settings, don't for-
get to configure the execution mode: sudo nvidia-smi -c 3. 

Step 3. Generating Individual LMs 

- This step corresponds to Stage-2 in Figure 2. After getting anonymised training 
data, individual LM training schemes are evaluated to achieve generic LMs. The 

 
25 https://github.com/alphacep/vosk-api 
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different components of this stage are given in the script LM_adaptation/lo-
cal/train_generic_LMs.sh. 

Step 4. Adaptation and Interpolation of LMs 

- After Stage-2, generic LMs are first adapted over the original adaptation data and 
then interpolated to achieve the final mixture LM corresponding to Stage-3 in Fig-
ure 2. For simplicity and effortless deployment, the SRILM toolkit is mainly em-
ployed over the ARPA-based LM representations. Inside the scrip LM_adapta-
tion/local/adapt_and_interpolate_LMs.sh, major components of this step are pre-
sented. 

Step 5. Decoding AM with Look-Ahead Composition 

- To decode test samples with different LM settings, refer to the script LM_adapta-
tion/local/decode_with_lookahead.sh which implements lookahead decoding. If 
you don't want to implement on-the-fly graph composition, LM_adaptation/lo-
cal/decode_standard.sh performs standard Kaldi decoding with traditional HCLG 
graph generation. 

6.2 Spoken Language Understanding and Dialogue Manage-
ment 

Our experiments on SLU and DM described in the previous sections have painted a 
mixed image. On the one hand, we were able to show that a modest amount of personal 
data can have a beneficial impact on the resulting model. However, it is questionable 
whether the contributions of a single user can be considered sufficient to have a relevant 
impact. 

Despite extensive efforts to determine the decisive factors that determine the perfor-
mance of the resulting models, our experiments eventually remained inconclusive. How-
ever, we have found out that using the Full-entity replacement strategy as the privacy-
preserving text transformation already leads to model performances that are on par with 
those of models trained on fully original data. 

The final personalised learning library therefore does not contain any special compo-
nents for SLU and DM learning. Instead, we recommend the use of the Full-entity re-
placement strategy where possible. 

7 Conclusion 
This deliverable has presented, evaluated and analysed several model personalisation 
strategies for STT, SLU and DM. Two different aspects have been considered: one that 
relates to the AM for STT, and the other one that concerns text related processing. With 
respect to text related processing, it is important to recall that all text data which is col-
lected on the COMPRISE Cloud Platform has been anonymised using privacy-preserv-
ing text transformations. This deliverable has investigated the impact of training models 
on such transformed data, compared to a more classical training carried out using origi-
nal data (which is not feasible in the context of COMPRISE). Then, approaches for im-
proving these models through adaptation using a limited data set of original text are pre-
sented, evaluated and discussed. 

The AM is enhanced through the introduction of speaker embedding information along 
with the conventional spectral features. This approach was detailed and evaluated on 
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native and non-native English data in Deliverable D3.2 and in [Turan et al., 2020], and 
has been briefly recalled in this deliverable and evaluated on Latvian data. Several 
speaker embeddings can be used: i-vectors, initially proposed in the context of GMM-
based speaker recognition; speaker x-vectors, that have also been proposed for speaker 
recognition but relies on a deep neural network; and accent x-vectors that we have pro-
posed in Deliverable D3.2. On accented and non-native English data, accent x-vector 
embeddings lead to the best performance. On the Latvian data, the three types of em-
bedding (i-vector, x-vector speaker, and x-vector accent) lead to similar performance, 
and the improvement with respect to the baseline (i.e., no embedding) is small. It is worth 
mentioning that the error rates observed on native, non-native and accented Latvian data 
are rather close to each other, even for the baseline model. Further investigation of these 
approaches on some other language datasets would be useful. However, there are very 
few accented and non-native speech corpora available. 

The LM is the other component of STT systems where privacy is a concern. Several 
types of models can be used: N-gram word-based models, N-gram class-based models, 
and recurrent neural network based models that can handle longer histories that N-gram 
models. Experiments have shown that rescoring first-pass lattices using neural models 
in a second decoding pass yields the best results, especially when interpolated with 3-
gram word-based and class-based models. However, from a practical point of view, the 
3-gram class-based models that can directly be used for single-pass decoding are the 
best choice. Moreover, class-based models trained on anonymised data provide good 
speech recognition performance. Further improvement can be achieved by adapting the 
models with original data, but the improvement remains small with respect to the amount 
of adaptation data needed. 

For SLU and DM we have conducted a series of exploratory experiments to sound out 
the potential for improvements when personal data is available in addition to the privacy-
transformed data collected in the COMPRISE Cloud Platform. The results of these ex-
periments are disappointing and encouraging at the same time: we found that, for most 
privacy-preserving text transformations, the amount of original data required to have a 
noticeable impact is rather large. Therefore, when these text transformations are used, 
achieving performance gains through personalisation may not always be realistic. 

However, there is an exception. The two sampling conditions, Word-by-word replace-
ment and especially Full entity replacement, while not benefitting from additional per-
sonal data, already perform very well out of the box, comparable almost to the (unreal-
istic) case where all training data is original.  

In summary, the hopes of Task 3.3 to use personal data to improve models trained on 
transformed data have not been fulfilled at this point for SLU and DM. We therefore do 
not provide any particular software to that end. Rather, we recommend using one of the 
two sampling strategies for privacy-preserving text transformation. 
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