

Cost effective, Multilingual, Privacy-driven voice-enabled Services

www.compriseh2020.eu

Call: H2020-ICT-2018-2020

Topic: ICT-29-2018

Type of action: RIA

Grant agreement Nº: 825081

WP Nº3: Multilingual personalised

voice interaction

Deliverable Nº3.3: Final multilingual interac-

tion library

Lead partner: TILDE

Version Nº: 1.0

Date: 30/01/2021

http://www.compriseh2020.eu/

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

2

1 R: Report, DEC: Websites, patent filling, videos; DEM: Demonstrator, pilot, prototype; ORDP: Open Re-
search Data Pilot; ETHICS: Ethics requirement. OTHER: Software Tools
2 PU: Public; CO: Confidential, only for members of the consortium (including the Commission Services)

Document information

Deliverable Nº and title: D3.3 – Final multilingual interaction library

Version Nº: 1.0

Lead beneficiary: TILDE

Author(s): Askars Salimbajevs (TILDE),
Jurgita Kapočiūtė-Dzikienė (TILDE)

Reviewers: Dietrich Klakow (USAAR), Irina Illina (INRIA)

Submission date: 30/01/2021

Due date: 31/01/2021

Type1: OTHER

Dissemination level2: PU

Document history

Date Version Author(s) Comments

18/12/2020 0.1 Askars Salimbajevs Draft of TOC

15/01/2021 0.2 Askars Salimbajevs &
Jurgita Kapočiūtė-Dzikienė

Initial version

27/01/2021 0.3 Askars Salimbajevs &
Jurgita Kapočiūtė-Dzikienė

Revision based on the reviewers’
comments

30/01/2021 1.0 Akira Campbell &
Emmanuel Vincent

Final version reviewed by the
Project Manager and the
Coordinator

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

3

Document summary

This deliverable describes the “Final multilingual interaction library”, which is a collection

of methods and software components developed within Tasks T3.1 and T3.2 of Work

Package 3 to enable any user to interact with the dialogue system in any language using

speech or text.

The first part of this document is devoted to research activities carried out in these tasks,

concerning the integration of machine translation and speech-to-text on the one hand

and the integration of machine translation and dialogue systems on the other hand. In

this part we present:

● a “synthetic data pipeline” approach for training machine translation models that

are robust to speech recognition errors;

● a disfluency detection model to filter out disfluent words from the speech-to-text

output;

● monolingual and multilingual approaches for making dialogue system available

in multiple languages.

The second part of the document is focused on the main software components of the

multilingual interaction library which implement machine translation, dialogue manage-

ment and tools for reproducing research results.

Because of the limitations of modern mobile devices, both machine translation and dia-

logue management are implemented as cloud-based services. Complete and up-to-date

documentation of both components are provided online for developer convenience.

Therefore, this deliverable only documents the base functions of the APIs and gives ref-

erences to the full documentation.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

4

Table of contents

1 Introduction .. 6

2 Integration of Machine Translation and Speech-to-Text ... 6

2.1 Synthetic data pipeline .. 8

2.2 Data .. 9

2.3 Filtering of the synthetic data .. 10

2.4 Rule-based synthetic noise generation ... 11

2.5 Speech translation evaluation ... 11

2.6 Disfluency detection .. 12

2.7 Summary of results ... 15

3 Integration of Machine Translation and dialogue .. 15

3.1 Intent detection data ... 16

3.2 Methodology ... 17

3.3 Experiments and results ... 18

3.3.1 Monolingual experiments ... 19

3.3.2 Training multilingual models on English only.. 20

3.3.3 Training multilingual models on both English and target language 21

3.3.4 Training multilingual models on all languages .. 22

3.3.5 Summary of results .. 23

3.4 Conclusions and future work ... 24

4 Software components .. 25

4.1 Machine translation ... 25

4.1.1 Machine Translation API .. 25

4.1.2 Containerised Machine Translation systems .. 27

4.1.3 Terms of Use ... 29

4.2 Dialogue Management .. 29

4.2.1 Dialogue management API .. 30

4.2.2 Spoken language understanding ... 33

4.2.3 Terms of Use ... 35

4.3 Synthetic data pipeline tools ... 35

4.4 Disfluency detection .. 36

4.4.1 Training ... 36

4.4.2 Inference ... 37

4.5 Multilingual intent detection ... 37

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

5

5 Conclusion ... 39

6 Bibliography ... 40

A Detailed experimental results ... 42

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

6

1 Introduction

The goal of Work Package 3 is to enable any user to interact with dialogue systems in

any language. This deliverable, entitled “D3.3 – Final multilingual interaction library”, fo-

cuses on the following sub-goals:

● combining Machine Translation (MT) with Speech-To-Text (STT) and Text-To-

Speech (TTS) in order to provide a transparent interface between a user speak-

ing a given language and a dialogue system (or possibly a human) in another

language;

● combining MT with the components of a dialogue system, i.e., Spoken Language

Understanding (SLU), dialogue management, and spoken language generation.

It should be noted that the final multilingual interaction library presented in this delivera-

ble is a not a software library in the traditional sense (which can be statically or dynami-

cally linked with some program), but a collection of APIs, software tools and methodolo-

gies which enable a developer to create multilingual voice-enabled dialogue systems or

voice assistants. The STT and TTS components are not a part of the library and are not

described here (see Work Package 4). While the library will be integrated into the COM-

PRISE SDK and the COMPRISE Cloud Platform, it can also be used separately.

Therefore, this deliverable is structured as follows. In Section 2 we describe the research

conducted on robust integration of MT and STT, which involves a synthetic data pipeline,

filtering methods to improve the quality of the synthetic data and a rule-based method

for the generation of additional synthetic data. The proposed methods are evaluated in

an MT scenario. We also report our results on disfluency detection in speech transcripts.

Section 3 is devoted to research on the integration of MT and dialogue systems. We

describe two effective solutions to make a dialogue system accessible in multiple lan-

guages: (1) MT of the training data and (2) using multilingual models. Section 4 focuses

on software components of the library. We introduce the MT and dialogue management

(Tilde.AI) APIs which will be used in the operating branch of COMPRISE. We also pre-

sent tools for synthetic data filtering, disfluency detection and multilingual intent detec-

tion. We conclude in Section 5.

2 Integration of Machine Translation and

Speech-to-Text

Integrating MT with STT allows a user speaking his/her own language to interact with a

dialogue system in another language. This integration is not straightforward. First, we

can distinguish between two modes of translation:

● Simultaneous translation: The translated text is provided at the same time as the

speaker speaks.

● Asynchronous translation: The translated text is provided after the speaker fin-

ishes an utterance.

Simultaneous translation reduces the delay between speech and translation and can

improve the user experience. This is especially important for long utterances and mono-

logues. However, it requires both real-time STT and real-time MT and creates a number

of additional technological and research challenges.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

7

In COMPRISE, we are interested in voice assistant and dialogue scenarios where utter-

ances are usually short. Under these circumstances translation can be performed at the

end of a user input. This allows us to focus on asynchronous translation.

Furthermore, there are two main technical approaches for integrating STT and MT:

● Sequential speech translation: Perform speech recognition (STT) first, then trans-

late the recognised text.

● End-to-end translation: Use a single component (usually a neural network) to

translate to the target language directly from the audio input in the source lan-

guage.

End-to-end translation is considered to be a more promising approach. Theoretically it

allows the joint optimisation of STT and MT components for a particular task and should

be more robust. However, current end-to-end systems are yet to reach state-of-the-art

performance levels. Another downside to this approach is that it requires a rare kind of

training data: translated speech corpora. State-of-the-art neural machines require mil-

lions of sentences for training, which would roughly correspond to thousands of hours of

speech. Such data only exists for a few languages and in small quantities, compared to

large existing corpora of parallel text and annotated speech. Therefore, in COMPRISE,

we will focus on sequential speech translation.

The main problem with the sequential approach is the data quality mismatch between

STT and MT:

● Due to potential recognition errors, the output of the STT system is a noisy textual

representation of the spoken language. In addition, this representation does not

have any punctuation and can contain disfluent and ungrammatical text.

● An MT system is trained on written language; therefore, the input is expected to

have punctuation and be fluent and grammatically correct.

This mismatch results in poor translation quality if STT and MT components are naively

combined. There are several possible approaches to tackle this issue:

● train MT on spoken language, e.g., on transcripts of STT training data;

● post-process STT output to adapt it for MT: insert punctuation, correct disfluen-

cies;

● synthetically imitate spoken language features in the MT training data to train a

robust MT model.

Each of these approaches have their own advantages and limitations. Theoretically,

training MT on real spoken data should provide the best results. Unfortunately, STT da-

tasets rarely come with translations and are often too small for training modern neural

MT models. Still, if translation is available, STT data can be used for adaptation of a pre-

trained MT model.

The post-processing approach can be a good option for high-resource languages, such

as English, that have various spoken language processing tools and spoken language

datasets available. This allows the development of both data-driven and rule-based so-

lutions for correcting ungrammatical and disfluent utterances (Hassan et al., 2014). How-

ever, for less-resourced languages (e.g., Latvian, Lithuanian, or Portuguese) which

might not have required datasets or processing tools, following this approach is problem-

atic.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

8

The idea of the third approach is to simulate STT errors in the training data of MT.

There are multiple ways to do this, for example, randomly substituting correct words by

potentially confusing words using acoustic and linguistic embedding similarity (Simonnet

et al., 2018). This approach makes MT robust to STT errors, yet additional measures are

needed to deal with ungrammatical and disfluent input.

In our work, we explored the latter approach, but decided to generate data with synthetic

STT errors by using a pipeline of TTS and STT technologies, as will be detailed in Sec-

tion 2.1. The advantage of this approach is that it generates not only substitution errors,

but also insertions and deletions. In addition, it does not require additional data and only

uses already available MT training data. However, this method is limited by the availa-

bility of STT and TTS for a given language. In the case of COMPRISE, such technologies

will be available for the six languages (English, French, German, Latvian, Lithuanian,

Portuguese) and language pairs needed in the project.

2.1 Synthetic data pipeline

The basic idea of this approach is to convert standard MT training data to a form that

resembles the raw output from the STT system. This will introduce errors that are typi-

cally found in speech recognition output into the training data, and thus make the MT

system more robust. To create the data, we propose the following training data pre-pro-

cessing pipeline (see Figure 1):

1. Synthesise the source language sentences from the MT training dataset using TTS

(the grey boxes in Figure 1).

2. Use STT to transcribe the synthesised sentences (the orange boxes in Figure 1).

3. Use STT transcriptions together with the original target sentences as the synthetic

MT training dataset.

Figure 1: Synthetic data pipeline.

Before performing TTS and STT, the text needs to be pre-processed. For example, to-

kens that are pronounced incorrectly should be replaced to yield a correct pronunciation,

and tokens that are not pronounced in spoken language (e.g., special characters) should

be filtered out. Theoretically, the pre-processing step could also inject ungrammatical

and disfluent segments into the sentences, but this was not performed with this data.

This additional option will be explored in future research.

In the following experiments, we focus on Latvian-English speech-to-text MT. For speech

synthesis, we use three of Tilde’s Latvian TTS voices. Each sentence is synthesised with

one of the three voices chosen at random. The source text is filtered from characters that

should not be pronounced by the TTS (e.g., parentheses, quote signs, some punctuation

signs).

Source
text

TTS STT
Synthetic

source
text

Target
text

Synthetic
source
audio

Synthetic MT training dataset

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

9

For the STT, we then use Tilde’s Latvian STT system which is based on a hybrid Hidden

Markov Model and Time-Delay Neural Network acoustic model. The language model is

implemented on a sub-word level using Byte-Pair Encoding (BPE) and consists of 4-

grams, 6-grams, and a Recurrent Neural Network language model (RNNLM). However,

in order to inject more errors into the resulting synthetic training data, only the 4-gram

language model is used here.

As raw speech recognition output contains numbers written with words instead of digits,

the MT system will have to learn how to translate words into digits. Therefore, to simplify

the training of the MT system, we apply Tilde’s in-house number normalisation tool for

Latvian which rewrites numbers as digits. In the case when number normalisation tools

are not available for a given language, raw transcripts from the STT system could also

be used as the source text for MT training.

The pipeline for other languages can be constructed similarly: for STT we can use mod-

els available on the COMPRISE Cloud Platform and for TTS the open-source eSpeak

synthesiser. The training dataset can be created from the WMT 2017 training dataset

(Bojar et al., 2017) or any other parallel sentence text corpus.

2.2 Data

The Latvian-English WMT 2017 training dataset (Bojar et al., 2017) is used for training

the MT system. The dataset consists of three smaller datasets:

● Europarl: proceedings of the European Parliament (637,599 sentence pairs).

● RAPID: press-releases taken from the Press Release Database of the European

Commission (306,588 sentence pairs).

● DCEP: press-releases, session and legislative documents related to the Euro-

pean Parliament’s activities and bodies (3,542,280 sentence pairs).

First, the data is processed by the Synthetic Data pipeline described in the previous

section. The Word Error Rate (WER) of the synthesised data was approximately 20.7%.

Then, we follow our baseline MT training recipe and pre-process the data using standard

Moses (Koehn et al., 2007) scripts for normalisation. First, punctuation was normalised

(normalize-punctuation.perl). Then, the corpus was cleaned (clean-corpus-n.perl) by re-

moving segments that are too long and segments where the ratio of source and target

lengths exceeds 3. Such cleaning is necessary, because WMT data contain some erro-

neous translations.

After cleaning, 4,407,375 sentences remained in the training data. The data were further

processed using the Moses tokeniser (tokenizer.perl) and truecaser (train-truecaser.perl

and truecase.perl). Finally, words were split into sub-word units using byte-pair encod-

ing3 (Sennrich et al., 2016) with 24.5k merge operations.

For tuning, we use the NewsDev2017 dataset from WMT 2017 (2003 sentence pairs)

which is also processed using the same methods and tools.

The evaluation is performed on three datasets:

● NewsTest2017 from WMT 2017 (2001 sentence pairs).

3 Subword Neural Machine Translation https://github.com/rsennrich/subword-nmt

https://github.com/rsennrich/subword-nmt

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

10

● Synthetic NewsTest2017 which is NewsTest2017 processed by the same TTS-

STT pipeline (2001 sentence pairs).

● Real-world test set “Tilde Balss” (1159 sentence pairs).

The real-world test set is based on a subset of data collected by the Tilde real-time Lat-

vian STT. This subset contains 8,820 utterances and 37,782 words in 39 hours of audio

(including silence). Utterances come from various domains: queries, short messages,

addresses, interaction with a voice-enabled educational app, etc. In addition, it contains

a lot of “noise”: laughing, English and Russian speech, untranslatable or ambiguous ut-

terances, etc. Therefore, several rounds of semi-automatic filtering were performed to

select meaningful utterances from this dataset. This resulted in a dataset of 1,159 Latvian

utterances which were manually translated to English.

2.3 Filtering of the synthetic data

Although the speech processing workflow introduces real noise, it is also evident that it

introduces errors due to the limitations of the workflow itself. For instance, the speech

synthesiser is unable to pronounce foreign named entities and complex identifiers cor-

rectly. This results in misrecognition by the STT system (i.e., in such cases it either de-

letes words or recognises the mispronounced names as some other common phrases,

which are not even necessarily phonetically similar). The synthesiser also drops most

Unicode characters that it cannot pronounce, which also introduces noise in the parallel

corpus.

Examples of errors introduced by the workflow itself are given in Table 1.

Table 1. Examples of noise introduced by the limitations of the speech processing

tools.

Source / Target in the parallel corpus Synthetic segment / Translation (English)

Pierre Schapira, Attīstības komiteja ieviests papīra attīstības komiteja

Pierre Schapira, Committee on Develop-

ment

introduced paper committee on development

Mieczysław Edmund Janowski edmunda jānoski

Mieczysław Edmund Janowski edmund jnoski

Skatīt arī MEMO / 14 / 597 skatīt arī melo 14 597

See also MEMO / 14 / 597 see also lie 14 597

To address these issues, we filter the generated synthetic data by discarding sentences:

● that contain website addresses or Roman or Arabic digits,

● that contain one character,

● for which the similarity based on the Levenshtein distance (Levenshtein, 1966)

between the original and the synthetic sentence is lower than 0.9.

We applied the Levenshtein distance-based similarity threshold to identify segments that

have been corrupted too much by the synthetic data generation workflow. For instance,

this allows us to address issues introduced by the misrecognition of foreign named enti-

ties and complex identifiers.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

11

2.4 Rule-based synthetic noise generation

After filtering, we performed an error analysis to investigate what types of errors common

to STT systems were present in the filtered data. The results showed that 35.6% of all

errors were suffix-related. This was to be expected as Latvian is a morphologically rich

language with fusional morphology and incorrect inflections are common mistakes for

STT systems (Salimbajevs & Strigins, 2015). Other errors were deletions (32.9%), inser-

tions (25.2%), and the remaining 6.3% were related to other types of lexical misrecogni-

tions.

Next, we analysed what types of suffix (or inflection) errors are present in the data. For

this, we used the Tilde's Latvian Part-Of-Speech (POS) tagger4 and extracted a list of

the most common inflection changes. The analysis revealed that the 26 most common

inflection changes amount to 90% of all suffix errors.

Since we found that 26 most common inflection changes amounted to 90% of all suffix

errors, we devised a method that iterates through the original dataset in a random fashion

and randomly generates in each sentence one of the error types for a random number

of words for which that particular error type can be introduced.

As an additional step, we validated the generated errors using a vocabulary to make sure

that the generation produced real Latvian words. After generation, we only selected sen-

tences that had at least one error.

2.5 Speech translation evaluation

Since the paradigm-shifting success of Neural Machine Translation (NMT) systems at

the 2016 Conference on Machine Translation (WMT) (Bojar et al., 2016), and the inven-

tion of the self-attentional Transformer architecture (Vaswani et al., 2017), Transformer-

based NMT models have become the baseline choice for MT experiments.

Therefore, for the evaluation of the synthetic data pipeline we use the Marian NMT toolkit

(Junczys-Dowmunt et al., 2018) for the training of all NMT systems and the Marian base

model configuration for the model hyper-parameters.

In order to generate the synthetic data, we use a selection of three Latvian TTS voices.

For each sentence, we choose one of the voices at random. Characters that are not

pronounced by TTS are filtered from the source text (e.g., parentheses, quotation marks,

various other punctuation marks).

We use an STT system based on a hybrid Hidden Markov Model and Time-Delay Neural

Network acoustic model and a sub-word language model. The language model is imple-

mented using BPE and consists of 3 models: a 4-gram, a 6-gram and an RNNLM. In

order to inject more errors into the resulting synthetic training data, only the 4-gram lan-

guage model is used to produce synthetic data. As the raw speech recognition output

contains numbers written with words not digits, the MT model would have to learn how

to translate words into digits. Therefore, to simplify the training of the MT system, we

apply a number normalisation tool for Latvian that re-writes numbers as digits. If number

normalisation tools are not available for a given language, raw transcripts from the STT

system could also be used as the source text for MT training.

4 The source code can be found online at: https://github.com/pdonald/latvian

https://github.com/pdonald/latvian

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

12

The speech processing workflow produced 4,407,364 synthetic sentences. After filtering,

1,921,043 sentences remained in the synthetic dataset. The rule-based synthetic noise

generation workflow produced 753,693 sentences with vocabulary validation and

961,227 sentences without vocabulary validation. The vocabulary was built using the

original training data.

For validation, we use the NewsDev2017 dataset from WMT2017. The dataset was also

processed using the speech processing workflow. For validation during training, we use

a combination of the clean and noisy validation sets.

The results in Table 2 show that, for the STT output, supplementing the original training

data with synthetic noise increases the MT quality by up to 1.66 BLEU points. A similar

tendency is evident when translating human-created transcripts that also may contain

orthographic speech noise (e.g., truncated words, incorrect syntax, wrong punctuation,

etc.). Only when translating clean publishable transcripts, the systems that are trained

on noisy data show lower results than the baseline system. Nevertheless, the synthetic

noise generation strategies have been successful in handling STT output better and

achieving higher translation quality than the baseline system.

The results also show that the best results were achieved when combining the fil-

tered synthetic data and the data that is generated using rules with vocabulary

validation. The combined data allow increasing the translation quality by 1.87 BLEU

points over the baseline system.

Table 2. Evaluation results (bold: highest score; †: statistically significant improvement

over the baseline with p<0.01).

Training data
STT output Ref. transcript Ref. + punct.

BLEU ChrF2 BLEU ChrF2 BLEU ChrF2

a. Original parallel data (baseline) 12.73 0.4395 14.67 0.4622 20.90 0.5123

b. Noisy synthetic data 12.61 0.4160 14.08 0.4306 13.94 0.4251

c. a + b †14.33 0.4374 †16.08 0.4577 20.45 0.5068

d. Filtered synthetic data + a †14.39 0.4602 †16.79 0.4854 19.37 0.4995

e. Rule-based data (no voc.) + a 12.08 0.4243 13.12 0.4377 18.57 0.4830

f. Rule-based data (with voc.) + a 11.47 0.4231 12.75 0.4367 18.94 0.4847

g. Rule-based data (no voc.) + d 13.72 0.4484 †16.00 0.4815 18.69 0.4973

h. Rule-based data (with voc.) + d †14.60 0.4547 †17.29 0.4907 19.46 0.5028

2.6 Disfluency detection

Another important issue concerns ungrammatical spontaneous spoken language: people

speak continuously without pauses and sentence breaks, often make repetitions, correct

themselves, or stop in the middle of a sentence. This will create problems both for stock

MT which expects clean input and for MT trained on synthetic data, because the syn-

thetic data pipeline does not produce disfluencies. This means disfluencies should be

detected and corrected before the resulting text gets translated by the MT model.

Most work on disfluency detection heavily relies on human-annotated data, which is

scarce and expensive to obtain in practice, especially for a less-resourced language like

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

13

Latvian. Therefore, in the scope of WP3 the self-supervised multi-task approach

(Wang et al., 2020) was investigated to address the disfluency detection in speech

recognition output.

The goal is to detect the added disfluent words by associating a label for each word,

where the labels D and O mean that the word is an added word or a fluent word, respec-

tively (see Figure 2).

I want a flight to Boston um to Denver

O O O O D D D O O

Figure 2. Example of disfluency tagged sentence.

The idea of the self-supervised approach by Wang et al. (2020) is to construct large-

scale pseudo training data by randomly adding or deleting words from unlabelled data,

and use it to train a multi-task model for joint:

● word tagging, i.e., detecting the added disfluent words,

● and sentence classification, i.e., distinguishing original sentences from grammat-

ically incorrect sentences.

After self-supervision the model can be fine-tuned on a small real data set which is man-

ually labelled (see Figure 3).

Figure 3. Self-supervised training of a disfluency detection model (Wang el al, 2020).

The model is an encoder network with an input embedding layer and two softmax output

layers, one for the tagging task and one for the classification task (see Figure 4). We use

a Transformer encoder with 512 hidden units, 8 heads, 6 hidden layers, GELU activa-

tions (Hendrycks and Gimpel 2016), and dropout of 0.1. We train our models with the

Adam optimiser. For the joint tagging and sentence classification objectives, we use

streams of 192 tokens and mini-batches of size 256, where approximately 30% of the

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

14

data are single sentences used for the tagging task, and another 70% are sentence pairs

for the sentence classification task. We use a learning rate of 1e-5 and train for 50

epochs.

Figure 4. Disfluency detection model structure (Wang et al, 2020).

When fine-tuning, we use a batch size of 32, a learning rate of 1e-6, and 20 epochs. The

parameters of the input embedding layer, the encoder layer, and the tagging layer are

shared among the pre-training and fine-tuning phases. During the inference phase, only

the output tagging layer is used.

The model is trained with self-supervision on large-scale pseudo training data created

from unlabelled data (about 26M sentences from Latvian web news portals). Then, the

model is fine-tuned on human-labelled data. A disfluency-tagged dataset (about 2,000

sentences) was created from phone call recordings at a tech support centre. 1,000 sen-

tences are used for fine-tuning and another 1,000 for evaluation.

During the evaluation we compare the self-supervised model with a traditional model

trained only on human annotated data (Table 3). The self-supervised approach out-

performs the baseline; however, accuracy is too low to be used in practice.

Table 3. Evaluation of the self-supervised disfluency detection approach.

Model Precision, % Recall, % F1-score, %

Baseline 52% 58% 54%

Self-supervision 65% 71% 68%

Such low results can be explained by the difficulty of the test data: the annotator self-

agreement free-marginal kappa is 0.71 only. Therefore, a simpler disfluency tagged da-

taset was created which contains less ambiguities. 3,000 sentences were collected from

real-world usage data of Tilde’s real-time Latvian STT. Sentences were manually tagged

and split into two subsets (1,000 for evaluation, 2,000 for fine-tuning).

Evaluation on the new data is presented in Table 4. As with the previous results, the self-

supervised approach outperforms the baseline in terms of recall and F1 but achieves

lower precision. Since the second dataset is bigger, we also performed some additional

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

15

experiments using 1,000 sentences for training and fine-tuning. This allows us to com-

pare results with the previous experiment and observe that both the baseline model and

the self-supervised model show much better results when tuned and tested on less am-

biguous data of the same size. The improvement is especially significant in the case of

baseline model training without any self-supervision.

Also, it can be seen that: (1) adding more data improves the performance of both

models, (2) the self-supervised approach allows us to achieve the same perfor-

mance as the baseline using half the data.

Table 4. Evaluation of self-supervised disfluency detection on a simpler data set.

Model Precision, % Recall, % F1-score, %

Baseline (1,000 sentences) 75% 65% 70%

Baseline (all data) 78% 67% 72%

Self-supervision (1,000 sentences) 70% 75% 72%

Self-supervision (all data) 71% 78% 74%

2.7 Summary of results

The synthetic data pipeline approach was proposed and investigated to address the mis-

match between the STT output and the MT training data. Several MT systems were

trained and evaluated. It was noticed that using the synthetic data in MT training resulted

in a clear benefit when translating STT output. The approach was further improved by

special filtering of the synthetic data and the generation of additional data by rule-based

methods. This increases the translation quality by 1.87 BLEU points over the baseline

stock MT system.

The self-supervised approach was studied to address the disfluency detection in speech

recognition output. Two disfluency-tagged datasets (2,000 and 3,000 sentences) were

created for model fine-tuning and evaluation. On both datasets the self-supervised ap-

proach outperformed the baseline trained without self-supervision: 68% F1 versus 54%

F1 on the first dataset and 74% versus 72% on second dataset. The second dataset is

less ambiguous therefore both models show much better results. Also, it was observed

that: (1) adding more data improves the performance of both models, (2) the self-super-

vised approach allows us to achieve the same performance as the baseline using half

as much data.

3 Integration of Machine Translation and dialogue

English is a resource-rich language. In the machine learning (and especially deep learn-

ing) era, this fact explains why so much research has been done for English and so many

accurate tools have been developed. The lack of resources or the proprietary nature

often becomes an obstacle that hinders progress for some other languages, especially

complex ones with a small number of speakers.

The goal of our research in Task T3.2 is to cross the barrier of monolingualism by offering

effective multilingual dialogue solutions based on (1) a monolingual model trained on

machine translated data for every language of interest and/or (2) a single multilingual

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

16

model trained on one or a few languages and used on other languages. The first ap-

proach completely relies on the accuracy of MT tools. The second one is a novel point-

of-view to the problem, which has not been experimentally investigated much so far.

3.1 Intent detection data

In this research we aim to train a Natural Language Understanding (NLU) module, which

is responsible for the comprehension of the user’s intent. The NLU module is a key com-

ponent in conversational (chatbot) systems, as well as in spoken dialogue interfaces

where it is called SLU instead.

Formally, intent detection is a typical example of supervised text classification, which

requires labeled instances for training. For this reason, we have used a manually pre-

pared English dataset containing texts (i.e., user queries) with the assigned classes (i.e.,

corresponding chatbot answers). The dataset domain covers topics related to the appli-

cation Tildės Biuras5, i.e., prices, licenses, supported languages, used technologies. In-

stances in the dataset were shuffled and split into training and test subsets, keeping the

proportion for training / test instances in each class equal to 80% / 20%, respectively

(Table 5).

Table 5. Statistics about the used English benchmark dataset.

Training Testing

Numb. of intents 41 41

Numb. of instances 365 144

Instances per intent 8.9 3.5

In addition to English (EN), we have considered one more Germanic language (i.e., Ger-

man – DE), two Romance languages (French – FR and Portuguese – PT) and two Baltic

languages (Lithuanian – LT and Latvian – LV), differing from each other by such charac-

teristics as morphology, derivational systems, sentence structure, etc. The diversity of

languages will allow us to reveal whether there are regularities that cross the boundaries

of each language.

The EN training dataset has been machine translated into DE, FR, LT, LV, and PT via

Google, in order to simulate the real situation when no annotated training data is availa-

ble for these languages and machine translated data is used to train the intent detection

model instead. The test datasets for DE, FR, LT, LV, and PT were manually translated

from EN instead. The size of the datasets in each language is summarised in Table 6.

Table 6. Statistics about datasets in different languages: number of words.

Language Training Testing

EN 2,826 1,090

DE 2,369 877

FR 2,743 1,222

LT 1,929 751

LV 1,991 855

5 Tildės Biuras. https://www.tilde.lt/tildes-biuras

https://www.tilde.lt/tildes-biuras

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

17

PT 2,812 1,133

3.2 Methodology

Our intent detection models consist of two parts: (1) a text vectorisation model trained

on a large unlabeled text corpus and (2) a classification model trained on intent detection

data in a supervised manner.

For the vectorisation, BERT (Bidirectional Encoder Representations from Transformers;

Devlin et al., 2019) was selected because it is a robust solution for disambiguation prob-

lems since homonyms (words with the same spelling but different meanings) are repre-

sented by different word vectors depending on their context. We have investigated two

categories of pre-trained BERT models for vectorisation:

 Word embedding (BERT-w). We have tested 4 monolingual word embedding

models (for EN only): bert-base-cased, bert-base-uncased, bert-large-cased, and

bert-large-uncased (where cased and uncased stand for models trained on cased

or lower-cased texts, respectively), and 2 multilingual word embedding models

(covering all of our target languages, i.e., EN, DE, FR, LT, LV, and PT): bert-

base-multilingual-cased, and bert-base-multilingual-uncased.6

 Sentence embedding (BERT-s). We have tested 4 monolingual sentence em-

bedding models (for EN only): roberta-base-nli-stsb-mean-tokens, roberta-large-

nli-stsb-mean-tokens, bert-large-nli-stsb-mean-tokens, and distilbert-base-nli-

stsb-mean-tokens, and 4 multilingual sentence embedding models: distiluse-

base-multilingual-cased-v2, xlm-r-distilroberta-base-paraphrase-v1, xlm-r-bert-

base-nli-stsb-mean-tokens, and distilbert-multilingual-nli-stsb-quora-ranking.7

For the classification, we have investigated the following approaches:

● BERT-w + CNN: fixed BERT word embeddings with a Convolutional Neural Net-

work (CNN) classifier. CNNs were introduced by LeCun et al. (1998), but in our

experiments we have used the 1D CNN architecture adjusted for text (Kim, 2014).

The CNN architecture and hyper-parameters have been refined by Tilde for var-

ious language processing tasks. The CNN gets a vectorised query (i.e., a se-

quence of word embeddings) as input and learns to detect relevant patterns (con-

sisting of 2, 3 or more adjacent tokens, so-called n-grams, regardless of their

position in the text) that have a major impact on the estimation of the intent.

● BERT-w + BERT: BERT word embedding model fine-tuned on our data for the

downstream intent detection task.8

6 The detailed description of these BERT word embedding models can be found at https://hug-
gingface.co/transformers/pretrained_models.html.
7 The detailed description of these BERT sentence embedding models can be found at
https://www.sbert.net/docs/pretrained_models.html.
8 Fine-tuning is performed by adding a fully connected classification layer on top of the embed-
ding of the special [CLS] token and backpropagating the gradient through the entire architecture.
Before fine-tuning, the [CLS] token embeddings output by the pre-trained BERT-w models do not
provide a good representation of the sentence. By contrast, the [CLS] token embeddings output
by the pre-trained BERT-s models provides a reliable generic sentence representation.

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

18

● BERT-s + FFNN: fixed BERT sentence embeddings (as introduced and tested

for similarity tasks by Reimers & Gurevych (2019)) with a Feed Forward Neural

Network classifier.

● BERT-s + COS: fixed BERT sentence embeddings with cosine similarity meas-

ure. During the test phase the cosine similarity was calculated between each test

instance and all training instances. The test instance was assigned with the label

of the training instance with which the similarity was the highest.

These four approaches were implemented in Python with the Tensorflow9, Keras10 and

PyTorch11 libraries. The word and sentence transformer models were taken from the

huggingface12 repository.

3.3 Experiments and results

The training datasets described in Section 3.1 were used to create models, i.e., to train

and tune on the 80% / 20% split from the shuffled training data. Then the created models

were tested on the test datasets. The performance of each model was evaluated with

the accuracy, precision, recall, and f-score metrics. The evaluation of accuracy, preci-

sion, recall and f-score metrics was performed using sklearn.metrics13.

The accuracy, precision, recall and f-score values were averaged in 5 runs and the con-

fidence intervals were calculated for all methods except BERT-s + COS. BERT-s + COS

calculates a fixed similarity metric between two pre-trained vectors, therefore any run

gives absolutely the same results (and confidence intervals cannot be calculated).

A model is considered reasonable if the calculated accuracy is above random and ma-

jority baselines:

random_baseline = ∑𝑃2(𝑐𝑗)

𝑗

 (3.1)

majority_baseline = max
𝑗

𝑃(𝑐𝑗) (3.2)

with P(cj) the probability of class cj. In our experiments random and majority baselines

are equal to ~0.04 and ~0.09, respectively. The low random baseline value demonstrates

the difficulty of the task for which random guess cannot be a solution. The low majority

baseline values show that the dataset is not biased towards any class.

When comparing evaluation results, it is important to determine whether differences are

statistically significant. For this purpose, McNemar’s test (McNemar, 1947) with 95%

confidence (α = 0.05) has been used. Differences are considered statistically significant

if the calculated p value is below α = 0.05. The evaluation of statistical significance was

performed using the statsmodels.stats.contingency_tables module in Python.

We investigated the following training and test conditions:

9 TensorFlow, a free and open-source software library for machine learning. https://www.tensor-
flow.org/
10 Keras: the Python deep learning API. https://keras.io
11 PyTorch is an open source machine learning library. https://pytorch.org/
12 Hugging face AI community. https://huggingface.co
13 Scikit-learn, a free software machine learning library. https://scikit-learn.org

https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://huggingface.co/
https://scikit-learn.org/

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

19

 Monolingual (see Section 3.3.1), where training and testing are done on one

and the same target language. These experiments will demonstrate the perfor-

mance of monolingual models trained on machine translated data.

 Multilingual (train EN) (see Section 3.3.2), where training is done on the EN

training dataset, but testing is performed on the test dataset of some other target

language (e.g., DE, FR, LT, LV, PT). These experiments will reveal if multilingual

models trained in one language (EN in our case) can be useful for another (target)

language.

 Combined (train EN + target) (see Section 3.3.3). These experiments combine

the previous two approaches and are similar to multilingual (train EN). The only

difference is that instead of EN alone, we use two training datasets of two lan-

guages (i.e., EN plus MT to the target language), whereas testing is done on the

target language only. These experiments will show if the model benefits from

training on the original dataset of a language (different from the target) comple-

mented with the machine translated samples in the target language.

 Combined (train all) (see Section 3.3.4), where training is done on all training

datasets of all languages (except the target language) and testing is done on the

test dataset of the target language. This is similar to the above method, but rep-

resents the scenario in which machine translated data for the target language

cannot be obtained or are of very poor quality.

3.3.1 Monolingual experiments

For the monolingual set of experiments, we have tested all four approaches described in

Section 3.2 on separate languages. Monolingual model evaluation results with BERT-w

+ CNN, BERT-w + BERT, BERT-s + FFNN and BERT-s + COS are presented in Tables

8, 9, 10, and 11 in Appendix A, respectively.

To see clearly which monolingual model is the best for each language, we have summa-

rised these accuracies in Figure 5 by selecting the best word or sentence embedding for

each language and each of the 4 classification methods. Methods based on sentence

embeddings outperform methods based on word embeddings. The best results are from

BERT-s + FFNN followed by BERT-s + COS. In most cases, the differences between

their accuracies are not statistically significant.

Word embedding-based methods use sequences of concatenated word vectors to rep-

resent texts/sentences, whereas sentence embeddings aggregate the meaning of the

text/sequence as a whole. Hence, it seems that sentence embeddings are the more nat-

ural way to represent texts for any language for the intent detection task.

The best overall accuracy (~0.842) is achieved on English data. This is not surprising as

this result represents the topline: it uses the manually prepared training dataset and the

sentence embedding model roberta-base-nli-stsb-mean-tokens that has been trained on

English data only. This explains why the result is the best for English and worse for the

other languages with multilingual sentence embeddings (i.e., xlm-r-distilroberta-base-

paraphrase-v1 and xlm-r-bert-base-nli-stsb-mean-tokens).

More importantly, these results clearly show that the approach of machine translating the

training data is successful. The performance of models trained on machine translated

data only is very close to the topline and is similar across all 5 languages, despite the

fact that some languages are more closely related than the others.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

20

Figure 5. Intent detection accuracies and confidence intervals with BERT-w + CNN,

BERT-w + BERT, BERT-s + FFNN, BERT-s + COS monolingual models. Dashed lines
connect the best accuracy for a given language with those accuracies for which the dif-

ference is not statistically significant.

3.3.2 Training multilingual models on English only

The following experiments were performed under the “train EN” condition, i.e., we train-

multilingual models on the EN training dataset alone and test on some other target lan-

guage. The results with BERT-w + CNN, BERT-w + BERT, BERT-s + FFNN and BERT-

s + COS are summarised in Tables 12, 13, 14, and 15 in Appendix A, respectively. The

highest accuracies for each language are given in Figure 6.

Accuracies with sentence embeddings exceed 70%. This is surprisingly good as models

haven’t seen any training data in the target language. For GE and FR, BERT-s + FFNN

is a better option whereas, for LT, LV and PT, BERT-s + COS achieves higher accuracy.

This difference is not statistically significant for DE, LT and PT. Out of the 4 multilingual

sentence embeddings, xlm-r-bert-base-nli-stsb-mean-tokens seems to be slightly better

for LT and PT and xlm-r-distilroberta-base-paraphrase-v1 for DE, FR, and LV.

0.
73

2

0.
78

2

0.
84

2

0.
81

3

0.
62

4

0.
70

4

0.
78

5

0.
77

1

0
.6

5
1

0.
73

3

0.
80

0

0.
77

1

0.
65

3

0.
72

1 0.
76

4

0.
70

8

0.
67

9

0.
73

1

0
.7

8
9

0
.7

4
3

0.
64

9

0.
70

3

0.
79

2

0.
77

8

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-u
n

ca
se

d

b
er

t-
la

rg
e-

u
n

ca
se

d

ro
b

er
ta

-b
as

e-
n

li-
st

sb
-m

ea
n

-t
ok

en
s

b
er

t-
la

rg
e-

n
li-

st
sb

-m
e

an
-t

o
ke

n
s

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-u
n

ca
se

d

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-c
as

ed

xl
m

-r
-d

is
ti

lr
ob

er
ta

-b
as

e-
p

ar
ap

h
ra

se
-v

1

xl
m

-r
-d

is
ti

lr
ob

er
ta

-b
as

e-
p

ar
ap

h
ra

se
-v

1

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-u
n

ca
se

d

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-u
n

ca
se

d

xl
m

-r
-b

er
t-

b
as

e-
n

li-
st

sb
-m

ea
n

-t
ok

en
s

xl
m

-r
-b

er
t-

b
as

e-
n

li-
st

sb
-m

ea
n

-t
ok

en
s

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-u
n

ca
se

d

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-u
n

ca
se

d

xl
m

-r
-d

is
ti

lr
ob

er
ta

-b
as

e-
p

ar
ap

h
ra

se
-v

1

d
is

ti
lb

er
t-

m
u

lt
ili

n
gu

al
-n

li-
st

sb
-q

u
o

ra
-r

an
ki

ng

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-u
n

ca
se

d

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-u
n

ca
se

d

xl
m

-r
-d

is
ti

lr
ob

er
ta

-b
as

e-
p

ar
ap

h
ra

se
-v

1

xl
m

-r
-b

er
t-

b
as

e-
n

li-
st

sb
-m

ea
n

-t
ok

en
s

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-c
as

ed

b
er

t-
ba

se
-m

u
lt

ili
ng

u
al

-c
as

ed

xl
m

-r
-b

er
t-

b
as

e-
n

li-
st

sb
-m

ea
n

-t
ok

en
s

xl
m

-r
-d

is
ti

lr
ob

er
ta

-b
as

e-
p

ar
ap

h
ra

se
-v

1

EN DE FR LT LV PT

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

21

Figure 6. Intent detection accuracies and confidence intervals with BERT-s + FFNN,
BERT-s + COS multilingual (train EN) models. For the notation see Figure 5.

Once again, we believe that the explanation of the sentence embeddings’ success lies

in the nature of vectorisation. A sentence is not a sequence of words (as with word em-

beddings), but their cumulative semantical meaning. Different languages have distinct

word orders, expressions or functional words (articles, modal verbs, etc.), therefore the

word embedding sequences representing a given sentence are very different. Despite

this, the meaning of a given sentence remains the same across all languages, which

explains the success of sentence embedding-based methods.

3.3.3 Training multilingual models on both English and target lan-

guage

The experiments in this section are very similar to those in Section 3.3.2. The only dif-

ference is that the training is performed on two datasets of two languages (i.e., EN + the

machine translated data for target language), whereas testing is done only on the target

language. This represents the scenario in which both approaches (MT of training data

and multilingual models) are combined. In these experiments we have tested only sen-

tence embedding-based models, because they demonstrated much better performance

in all previous comparative experiments.

0
.5

0
4

0.
58

8

0.
77

9

0.
77

1

0.
49

6

0.
57

8

0
.7

9
4

0.
72

2

0.
26

1 0.
31

9

0.
75

4

0.
75

7

0.
33

6 0.
38

6

0
.7

2
9 0.

79
2

0.
49

9 0.
57

6

0.
73

8

0.
76

4

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

b
er

t-
b
as

e-
m

u
lt

il
in

g
u
al

-u
n
ca

se
d

b
er

t-
b
as

e-
m

u
lt

il
in

g
u
al

-u
n
ca

se
d

x
lm

-r
-d

is
ti

lr
o
b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-b

er
t-

b
as

e-
n
li

-s
ts

b
-m

ea
n
-t

o
k
en

s

b
er

t-
b
as

e-
m

u
lt

il
in

g
u
al

-u
n
ca

se
d

b
er

t-
b
as

e-
m

u
lt

il
in

g
u
al

-u
n
ca

se
d

x
lm

-r
-d

is
ti

lr
o
b
er

ta
-b

as
e-

p
ar

ap
h
ra

se
-v

1

x
lm

-r
-b

er
t-

b
as

e-
n
li

-s
ts

b
-m

ea
n
-t

o
k
en

s

b
er

t-
b
as

e-
m

u
lt

il
in

g
u
al

-u
n
ca

se
d

b
er

t-
b
as

e-
m

u
lt

il
in

g
u
al

-u
n
ca

se
d

x
lm

-r
-b

er
t-

b
as

e-
n
li

-s
ts

b
-m

ea
n
-t

o
k
en

s

x
lm

-r
-b

er
t-

b
as

e-
n
li

-s
ts

b
-m

ea
n
-t

o
k
en

s

b
er

t-
b
as

e-
m

u
lt

il
in

g
u

al
-u

n
ca

se
d

b
er

t-
b
as

e-
m

u
lt

il
in

g
u
al

-u
n
ca

se
d

x
lm

-r
-b

er
t-

b
as

e-
n
li

-s
ts

b
-m

ea
n
-t

o
k
en

s

x
lm

-r
-d

is
ti

lr
o
b
er

ta
-b

as
e-

p
ar

ap
h
ra

se
-v

1

b
er

t-
b
as

e-
m

u
lt

il
in

g
u
al

-u
n
ca

se
d

b
er

t-
b
as

e-
m

u
lt

il
in

g
u
al

-u
n
ca

se
d

d
is

ti
lu

se
-b

as
e-

m
u
lt

il
in

g
u
al

-c
as

ed
-v

2

x
lm

-r
-b

er
t-

b
as

e-
n
li

-s
ts

b
-m

ea
n
-t

o
k
en

s

DE FR LT LV PT

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

22

The accuracies for BERT-s + FFNN and BERT-s + COS are summarised in Tables 16

and 17 in Appendix A, respectively. The best accuracies for each target language are

presented in Figure 7.

Figure 7. Intent detection accuracies and confidence intervals with BERT-s + FFNN

and BERT-s + COS multilingual (train EN + target) models. For the notation see Figure
5.

The best accuracies exceeding 80% are achieved with the BERT-s + FFNN method. For

FR and PT languages, the differences between BERT-s + FFNN and BERT-s + COS are

insignificant. The obvious sentence embedding model winner with BERT-s + FFNN is

xlm-r-distilroberta-base-paraphrase-v1, except for PT. However, its difference from xlm-

r-bert-base-nli-stsb-mean-tokens is less than 0.3% and insignificant.

3.3.4 Training multilingual models on all languages

In this subsection we describe the final set of experiments, in which multilingual model

training was performed on all training datasets for all languages (excluding the target

one, i.e., “train all” condition) and testing was performed on the test dataset of the target

language. This represents the scenario when MT for the target language is not available,

hence we try to improve the model by using machine translated data for other languages.

0.
82

9

0.
75

7

0.
81

7

0.
77

8 0
.8

1
4

0.
70

8

0.
83

1

0.
75

0

0.
81

0

0.
79

2

0.60

0.65

0.70

0.75

0.80

0.85

0.90

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k
en

s

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k
en

s

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

d
is

ti
lb

er
t-

m
u

lt
il

in
g

u
al

-n
li

-s
ts

b
-q

u
o

ra
-r

an
k
in

g

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k
en

s

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k
en

s

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k

en
s

DE FR LT LV PT

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

23

The accuracies for BERT-s + FFNN and BERT-s + COS are summarised in Tables 18

and 19 in Appendix A, respectively. The best accuracies for each target language are

presented in Figure 8.

Figure 8. Intent detection accuracies and confidence intervals with BERT-s + FFNN
and BERT-s + COS multilingual (train all) models. For the notation see Figure 5.

Zooming into Tables 18 and 19 and Figure 8 allows us to claim that the obvious winner

is the BERT-s + FFNN method. For LV and PT, the difference in accuracy with BERT-s

+ COS is not significant. The best achieved accuracies exceed 80% (except for LV),

which means that they exceed the results in Section 3.3.2 (train EN) and are competitive

with the results in Section 3.3.3 (train EN + target). The good performance of these mod-

els can be easily explained: more training data (training data of different languages) and

more diverse data (examples of different sentence structures for different languages with

the same meaning) lead to more robust models.

3.3.5 Summary of results

To easily compare the best achieved accuracies in the monolingual and the three multi-

lingual experiments, we have summarised them in Figure 9. The best results are ob-

tained by the “train all” approach (train on all available languages, except the target) with

the BERT-s + FFNN method, followed by multilingual training on the original EN and

machine translated target language datasets (train EN + target), with the exception of LV

0
.8

1
1

0.
75

7

0.
83

1

0.
75

7

0.
82

9

0.
77

1

0.
85

3

0.
71

5

0.
77

5

0.
72

2

0.
81

3

0
.7

8
5

0.60

0.65

0.70

0.75

0.80

0.85

0.90

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k
en

s

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k
en

s

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k
en

s

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k
en

s

x
lm

-r
-d

is
ti

lr
o

b
er

ta
-b

as
e-

p
ar

ap
h

ra
se

-v
1

x
lm

-r
-b

er
t-

b
as

e-
n

li
-s

ts
b

-m
ea

n
-t

o
k
en

s

EN DE FR LT LV PT

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

24

for which the opposite holds. There is no clear explanation why the LV language falls out

of the picture, but it is obvious that it benefits most from having training samples of its

own language.

Figure 9. Intent detection accuracies and confidence intervals for different languages
with monolingual and multilingual approaches. For the notation see Figure 5.

3.4 Conclusions and future work

The research presented in Section 3 attempts to solve a two-fold problem: 1) the intent-

detection problem for several languages (English, German, French, Lithuanian, Latvian

and Portuguese); 2) the annotated data scarcity problem, because such data for some

languages does not exist. For this reason, the English benchmark training dataset (in-

volving 41 intents) is machine translated via Google, whereas the test dataset is manu-

ally translated into all 5 languages. This is done intentionally to trying and simulate the

situation when annotated data is available in other languages, but not the target lan-

guage. The trained model is evaluated with manually prepared data, because it will be

used by people asking questions in their own language.

The intent detection problem was solved by using two types of vectorisation (BERT word

and sentence embeddings) and four classification (CNN, BERT fine-tuning, FFNN, and

Cosine similarity) approaches. The annotated data scarcity problem was tackled with

testing the previously described approaches under the following conditions: monolingual

(when training is done on the machine translated data), multilingual (when a multilingual

model is trained on English alone), and combined (a multilingual model trained on Eng-

lish complemented with machine translated samples in the target language or in several

languages excluding the target one). The experiments revealed that both monolingual

and multilingual approaches are equally effective. Furthermore, these approaches are

complementary and can be combined, which leads to superior results for all target lan-

guages. It must also be noted that sentence embeddings are strongly recommended for

the intent detection problem in all languages.

0.
78

5

0.
77

9

0.
82

9

0.
83

1

0.
80

0

0.
79

4

0.
81

7 0.
82

9

0.
76

4

0.
75

7

0.
81

4

0.
85

3

0.
78

9

0.
79

2

0.
83

1

0.
77

5 0.
79

2

0.
76

4

0.
81

0

0.
81

3

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88
B

ER
T-

s
+F

FN
N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+C
O

S

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+C
O

S

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+C
O

S

B
ER

T-
s

+F
FN

N

B
ER

T-
s

+F
FN

N

DE FR LT LV PT

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

25

The best accuracy on English data is ~0.842, but similar accuracy levels can be reached

for the other languages, namely ~0.831, ~0.829, ~0.853, ~0.831, and ~0.813 for Ger-

man, French, Lithuanian, Latvian, and Portuguese, respectively. This allows us to con-

clude that the intent detection problem can effectively be solved in a language-independ-

ent fashion without having necessary training resources in the target language.

As future research, we plan to continue working in the multilingual direction by exploring

different datasets and other classification problems. The most desirable result would be

to finally make sure that the annotated data scarcity problem for some languages is not

a problem anymore.

4 Software components

This section describes the components of the multilingual interaction library. Several of

these components (Sections 4.1.2, 4.3, 4.4, 4.5) are new, while the others were pre-

sented in Deliverable “D3.1 – Initial multilingual interaction library” (Submitted to the Eu-

ropean Commission on February 28, 2020 − Public). For the sake of completeness, all

of them are presented below.

4.1 Machine translation

Ideally, MT would be part of the COMPRISE Client Library and run locally on a mobile

device. However, MT requires a large amount of computational, run-time memory, and

storage resources, which are typically unavailable on mobile devices. Since the devel-

opment of on-device MT would require a separate project on its own and the develop-

ment of a new MT service is out of the scope of COMPRISE, we provide two alternative

solutions: cloud-based translation via Tilde MT, or containerised MT systems.

4.1.1 Machine Translation API

This section provides the documentation of the basic Tilde MT API functions which are

called by the COMPRISE Client Library (see Work Package 4). Full documentation can

be found online.14 The Tilde MT API implements a RESTful calling style over HTTPS,

i.e., all calls are inherently encrypted.

4.1.1.1 Authentication

All Tilde MT API requests must contain an authentication token in the HTTP header that

identifies the user of Tilde MT.

Developers of applications using COMPRISE libraries will need to contact Tilde and get

their client-id authorisation_token. Below is the header example of an HTTP request with

an authorisation token:

GET https://www.letsmt.eu/ws/service.svc/json/GetSystemList?appID=appid HTTP/1.1

client-id: authorisation_token

4.1.1.2 List of available systems

Tilde MT API provides a method to list available translation systems for an authenticated

user:

14 Tilde Machine Translation API. https://www.tilde.com/developers/machine-translation-api

https://www.tilde.com/developers/machine-translation-api

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

26

GET https://www.letsmt.eu/ws/service.svc/json/GetSystemList?appID=appid HTTP/1.1

client-id: authorisation_token

where appid is a string application identifier chosen by the developer.

The response will contain a JSON document containing the description of the systems

available to the user or the application. The table below presents a short description of

the main metadata entries of the MT system:

Name Type Description

ID string MT system ID

SrcLanguage complex Source language (IETF RFC 5646)

TrgLanguage complex Target language (IETF RFC 5646)

Domain string Translation domain

Title string Title of the MT system

Description complex Description of the MT system

Metadata complex More metadata about the system

Response example:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Content-Length: 916

{

"System":[

{

"Description":{ … },

"Domain":"law",

"ID":"smt-ea364952-816a-4491-9fbc-35b41056730a",

"Metadata":[…]

}, …]}

4.1.1.3 Translation

Knowing the MT system ID, developers can translate plain text or text with inline tags

using the Tilde MT API:

GET https://www.letsmt.eu/ws/service.svc/json/Translate?appID=appid&sys-

temID=sys&text=text client-id: authorisation_token

where:

1. appid is a string application identifier.

2. sys is a string translation system ID, obtained using the method in Section 3.1.2.

3. text is the text to be translated (with or without inline tags).

For translating longer text, it is recommended to use the HTTP POST method:

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

27

POST https://www.letsmt.eu/ws/service.svc/json/Translate HTTP/1.1

client-id: authorisation_token

Content-Type: application/json; charset=utf-8

Content-Length: XXX

{

"appID": "appid",

"systemID": "sys",

"text": "saule spīd spoži",

"options": ""

}

If a request is successful, the response will contain the translated text:

HTTP/1.1 200 OK

Content-Length: 23

Content-Type: application/json; charset=utf-8

"the sun shines bright"

In the case of an error the response will contain an error description:

code: 22

exception: systemNotFound

description: Translation system not found

4.1.2 Containerised Machine Translation systems

Containerised MT systems were also developed within WP3. The Docker containers are

meant to be run inside an instance of the COMPRISE Personal Server, so that the input

and output texts are not exposed to any cloud service provider.

Currently, the translation is performed on the CPU only. This is adequate for the transla-

tion of short queries that are typical with voice assistant systems. This also reduces hard-

ware requirements and therefore increases the range of servers on which these contain-

erised MT systems may be installed. A version with GPU support can be provided by

Tilde upon request.

To load the Docker image into your system run the following command:

sudo docker load -i image name.tar.gz

After that you can run the Docker container and map the two exposed ports: port 10000

for the paragraph translation API, and port 5000 for the sentence translation API. For

example, for the LV->EN translation Docker, the following command can be used:

sudo docker run --rm -p 10000:10000 -p 5000:5000 tilde-en-lv-translator

The Docker containers include the NMT models which are made accessible for transla-

tion via two different web services (each exposing a different API):

1. a web service for translating paragraphs, which automatically performs sentence

splitting;

2. a lower-level web service for translating single sentences or arrays of sentences,

which does not perform sentence splitting.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

28

The paragraph translation API can be called as follows:

$ curl http://localhost:10000/translate -X POST -H "Content-Type: application/json" -d

'{"texts": ["Hello world! The weather is nice.", "This is another paragraph."]}'

The result will be a JSON object containing both original and translated paragraphs.

{"translations": [{"text": "Hello world! The weather is nice.", "translation": "Sveiks, pa-

saule! Laiks ir jauks."}, {"text": "This is another paragraph.", "translation":

"\u0160\u012b ir v\u0113l viena rindkopa."}]}

Single sentences can be translated using the following request to the sentence transla-

tion API:

$ curl http://localhost:5000/translate -X POST -H "Content-Type: application/json" -d

'{"text": "Single sentence example."}'

The result will be a plaintext translation of the source sentence:

Viena teikuma piemērs.

The sentence API can also be used to translate an array of sentences:

$ curl http://localhost:5000/translate/batch -X POST -H "Content-Type: application/json"

-d '{"texts": ["Hello world!", "The weather is nice.", "No paragraphs here, just sen-

tences."]}'

The result will be a JSON array of translations:

["Sveiks, pasaule!","Laiks ir jauks.","Šeit nav rindkopu, tikai teikumi."]

All of the relevant services in the container are managed with `supervisord`, which keeps

the log files for each of the services in the /tmp directory. To access the log files, run the

following commands:

sudo docker ps

identify the relevant container id

sudo docker exec -ti <id_from_above> bash

cd /tmp

less *.log

Table 7 lists the provided MT system Docker images and the URLs for download.

Table 7. Dockerised MT systems.

Direction URL

EN -> LV
https://mt-tilde-tmp.s3-eu-west-1.amazonaws.com/docker-image-tilde-en-lv-

translator.tar.gz

EN -> DE Provided by Tilde upon request.

EN -> FR Provided by Tilde upon request.

https://mt-tilde-tmp.s3-eu-west-1.amazonaws.com/docker-image-tilde-en-lv-translator.tar.gz
https://mt-tilde-tmp.s3-eu-west-1.amazonaws.com/docker-image-tilde-en-lv-translator.tar.gz

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

29

Direction URL

EN -> PT Provided by Tilde upon request.

EN -> LT Provided by Tilde upon request.

LV -> EN
https://devcomprise.blob.core.windows.net/mt-dockers/docker-image-tilde-lv-en-

translator.tar.gz

DE -> EN Provided by Tilde upon request.

FR -> EN Provided by Tilde upon request.

PT -> EN Provided by Tilde upon request.

LT -> EN Provided by Tilde upon request.

4.1.3 Terms of Use

Tilde grants the rights to use Tilde’s MT technologies (both MT API and MT containers

for the COMPRISE Personal Server) to the project partners for non-commercial pur-

poses in the scope of the COMPRISE project. The project partners may use these MT

technologies for research, development, evaluation, and dissemination activities. The

rights to use Tilde’s MT technologies outside of the project scope or for commercial pur-

poses can be agreed upon with Tilde.

4.2 Dialogue Management

The Dialogue Management functionality of the multilingual interaction library is provided

by Tilde.AI’s cloud-based dialogue system (see Figure 10). This system comprises SLU,

Dialogue Management, and Spoken Language Generation in an integrated framework.

Normally, the developer of a mobile app will create a dialogue application with the

Tilde.AI dashboard by defining a dialogue scenario, intents, actions, etc. Then, the cre-

ated dialogue can be integrated into the mobile app using the Bot Service API.

In some cases, a developer might want to implement dialogue management and text

generation externally and only use Tilde.AI for SLU functions. For these cases, a sepa-

rate NLU API is provided by the Tilde.AI dialogue system.

Interaction with the Bot Service API and Tilde.AI NLU API are integrated into the COM-

PRISE Client Library, therefore developers using COMPRISE SDK do not need to ac-

cess these APIs directly.

https://devcomprise.blob.core.windows.net/mt-dockers/docker-image-tilde-lv-en-translator.tar.gz
https://devcomprise.blob.core.windows.net/mt-dockers/docker-image-tilde-lv-en-translator.tar.gz

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

30

Figure 10: Interaction between the Tilde.AI dialogue system and the COMPRISE Cli-

ent Library.

4.2.1 Dialogue management API

The Tilde.AI dialogue system is hosted on Azure Bot Service and uses Microsoft Bot

Framework for user communication. The preferred method of interacting with the Bot

Framework is the SDK provided by Microsoft for the following programming languages

and platforms: Python, JavaScript, .NET, and Node.js.

If the SDK is not available for the chosen programming language or if it cannot be used

for some other reason, then there are several Bot Service APIs that can be called directly:

● Bot Framework REST API.

● Direct Line API.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

31

Full documentation of these APIs can be found on Microsoft’s website15,16. Therefore,

here we will only provide a short description of base Direct Line API 3.0 functions.

4.2.1.1 Authentication

A mobile app can authenticate requests to Direct Line API 3.0 either by using a `secret`

obtained from the Tilde.AI dashboard or by using a `token` which is obtained at runtime.

The `secret` or `token` should be specified in the authorisation header of each request

using the following format:

Authorization: Bearer SECRET_OR_TOKEN

A Direct Line secret is a master key that can be used to access any conversation that

belongs to the associated bot. A secret can also be used to obtain a token. Secrets do

not expire.

A Direct Line token is a key that can be used to access a single conversation. A token

expires but can be refreshed.

4.2.1.2 Start a conversation

Direct Line conversations are explicitly opened by the mobile app and may run as long

as the user and dialogue system participate and have valid credentials. While the con-

versation is open, both the dialogue system and the user may send and receive mes-

sages.

POST https://directline.botframework.com/v3/directline/conversations

Authorization: Bearer SECRET_OR_TOKEN

If the request is successful, the response will be a JSON object containing an ID for the

conversation, a token, a value that indicates the number of seconds until the token ex-

pires, and a stream URL that the client may use to receive activities via a WebSocket

stream:

{

"conversationId": "abc123",

"token": "RCurR_XV9ZA.cwA.BKA.iaJrC8xpy8qbOF5xnR2vtCX7CZj0LdjAPG-

fiCpg4Fv0y8qbOF5xPGfiCpg4Fv0y8qqbOF5x8qbOF5xn",

"expires_in": 1800,

"streamUrl": "https://directline.botframework.com/v3/directline/conversa-

tions/abc123/stream?t=RCurR_XV9ZA.cwA..."

}

4.2.1.3 Send an activity to the dialogue system

Using the Direct Line 3.0 protocol, the user and the dialogue system may exchange dif-

ferent types of activities, including message activities, typing activities, etc.

15 Bot Framework REST API reference
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-connector-api-refer-
ence?view=azure-bot-service-4.0
16 Bot Framework Direct Line API 3.0 reference
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-api-refer-
ence?view=azure-bot-service-4.0

https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-connector-api-reference?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-connector-api-reference?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-api-reference?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-api-reference?view=azure-bot-service-4.0

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

32

The following snippet provides an example of how to send a text message to a dialogue

system:

POST https://directline.botframework.com/v3/directline/conversations/convid/activities

Authorization: Bearer SECRET_OR_TOKEN

Content-Type: application/json

[other headers]

where convid is a string identifier of the conversation obtained after starting a conversa-

tion.

The request body shall contain a JSON object describing the text message:

{

 "type": "message",

 "from": { "id": "user1" },

 "text": "hello"

}

If the POST request is successful, the response contains a JSON payload that specifies

the ID of the activity that was sent to the bot.

{

 "id": "0001"

}

4.2.1.4 Receive activities from the dialogue system

By using the Direct Line 3.0 protocol, clients can receive activities via a WebSocket

stream or retrieve activities by issuing HTTP GET requests.

To retrieve messages for a specific conversation using HTTP GET, the client should

issue the following request:

GET https://directline.botframework.com/v3/directline/conversations/convid/activi-

ties?watermark=w

Authorization: Bearer SECRET_OR_TOKEN

where:

● convid is a string identifier of the conversation obtained after starting a conversa-

tion.

● w is an optional watermark parameter to indicate the most recent message seen

by the client.

The response will be a JSON object containing new activities (messages) from the user

and the dialogue system:

{

 "activities": [

 {

 "type": "message",

 "channelId": "directline",

 "conversation": {

 "id": "abc123"

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

33

 },

 "id": "abc123|0001",

 "from": {

 "id": "bot1"

 },

 "text": "Nice to see you, user1!"

 }

],

 "watermark": "0001a-95"

}

Clients should page through the available activities by advancing the watermark value

until no activities are returned.

4.2.2 Spoken language understanding

A developer might want to implement their own dialogue management and text genera-

tion systems, but does not want or does not have the capability to develop SLU. In this

case, a developer can use the NLU API provided by Tilde.AI.

The mobile app might be interested in two particular functions of NLU API: intent detec-

tion and entity recognition. Full documentation of these and other NLU API functions can

be found on the Tilde.AI developer portal.17 However, in this document we will only pro-

vide a short description of intent detection and entity recognition functions.

4.2.2.1 Authentication

All Tilde.AI NLU API requests must contain a subscription key in the HTTP header that

identifies a user. This key can be obtained after signing up on the Tilde.AI developer

portal. Below is the header example of an HTTP request with an authorisation token:

GET https://dev-nlu1-am.azure-api.net/api/Train/languages

Ocp-Apim-Subscription-Key: subscription_key

4.2.2.2 Intent detection

The intent of the given text can be detected using the following POST request:

POST https://dev-nlu1-am.azure-api.net/api/Guess/AppId/LangId

Ocp-Apim-Subscription-Key: subscription_key

where:

● AppId is the app to be used to detect the intent. It is obtained via other API meth-

ods (see full documentation) or by using the COMPRISE SDK.

● LangId is the language of the text, e.g., “en-en”, “lv-lv”, etc.

The request body shall contain a text wrapped in double quotes.

"Hello. Can you detect intent on this text."

17 Tilde.AI developer portal
https://dev-nlu1-am.portal.azure-api.net/docs/services/natural-language-understanding-nlu/opera-
tions/PostAddEntities

https://dev-nlu1-am.portal.azure-api.net/docs/services/natural-language-understanding-nlu/operations/PostAddEntities
https://dev-nlu1-am.portal.azure-api.net/docs/services/natural-language-understanding-nlu/operations/PostAddEntities

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

34

The response will be a JSON object containing the detected intents sorted by descending

confidence.

[

 { "intentid": "greeting", "confidence": 0.607079566 },

 { "intentid": "some_intent", "confidence": 0.261552066 },

 { "intentid": "some_intent_2", "confidence": 0.131368339 }

]

4.2.2.3 Entity recognition

The Tilde NLU API can be used to extract entities from a given text. Entities should be

defined beforehand using specialised API functions (see full documentation) or by using

the COMPRISE SDK. Entity recognition is available by performing an HTTP POST re-

quest:

POST https://dev-nlu1-am.azure-api.net/api/Entity/AppId/LangId

Ocp-Apim-Subscription-Key: subscription_key

where

● AppId is the app to be used for entity recognition. It is obtained via other API

methods (see full documentation) or by using the COMPRISE SDK.

● LangId is the language of the text, e.g. “en-en”, “lv-lv”, etc.

The request body shall contain a text for which entity recognition should be performed:

"I would like to book a flight to London”

If the POST request is successful, the response will be a JSON object containing the

detected entities and their position in the input.

[

 {

 "dim": "@is_alive_NoNoKnowldgeAPI",

 "body": "is_alive_NoNoKnowldgeApi",

 "value": { "value": "is_alive_NoNoKnowldgeAPI", "type": "value" },

 "start": 0,

 "end": 39

}, {

 "dim": "@destination",

 "body": "destination",

 "value": { "value": "London", "type": "value" },

 "start": 33,

 "end": 39

 }

]

“is_alive_NoNoKnowldgeAPI” is an example entity which is hardcoded for every app for

debugging.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

35

4.2.3 Terms of Use

Tilde grants the rights to use the Tilde.AI API and user interface to the project partners

for non-commercial purposes in the scope of the COMPRISE project. The project part-

ners may use these technologies for research, development, evaluation, and dissemina-

tion activities. The rights to use Tilde.AI technologies outside of the project scope or for

commercial purposes can be agreed upon with Tilde.

4.3 Synthetic data pipeline tools

Relevant code for reproducing the synthetic data filtering and rule-based error generation

results described in Sections 2.3 and 2.4 is published in the COMPRISE GitLab reposi-

tory.18

Before running the provided scripts, one should install the conda19 package management

system and create an environment by running:

conda env create -f environment.yml.

The synthetic speech translation dataset can be filtered by running the following com-

mand:

python speech_translation.py filter --workdir= --source= --source_asr= --target= --

source_pos= --result_source= --result_source_asr --result_target --result_source_pos

where:

● source – file containing sentences in the source language;

● source_asr – file containing source sentences processed by synthetic data pipe-

line;

● source_pos – POS tags for source sentences in Moses factored data format;20

● target – file containing sentences in the target language.

Sentences in input files are separated by the newline character, so that each line con-

tains exactly one sentence. All input files should be aligned line-by-line.

In order to perform Rule-Based Synthetic Noise Generation first a suffix noise or suffix

error model should be learned from the filtered synthetic dataset. This can be done by:

python speech_translation.py learn_noise_model --workdir=workdir --source= --

source_pos= --source_asr= --result_model=

Then, the suffix noise model can be applied to any parallel dataset.

python speech_translation.py apply_noise_model --source= --source_pos= --target= --

result_source= --result_target= --noise_model=

18 https://gitlab.inria.fr/comprise/deliverables/deliverable-d33/-/tree/master/speech_translation

19 Conda open-source package management system and environment management system.
https://docs.conda.io/en/latest/
20 Moses factored data format. http://www.statmt.org/moses/manual/manual.pdf (page 241)

https://gitlab.inria.fr/comprise/deliverables/deliverable-d33/-/tree/master/speech_translation
https://docs.conda.io/en/latest/
http://www.statmt.org/moses/manual/manual.pdf

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

36

STT-like word splitting and merging noise can be added to the parallel training data by

running:

python speech_translation.py generate_split_merge --source= --target= --result_target=

--result_source=

We also provide an example script for creating the Kaldi data directory from a text file by

applying a TTS engine. The resulting data directory can then be processed by Kaldi to

create the synthetic training data for the MT engine.

The script is provided only as an example since it relies on TILDE’s TTS voices (which

are not provided). However, relevant sections can be easily replaced with calls to other

TTS engines and then the script can be run as follows:

python synth_dataset.py datadir < text_file

where:

● datadir – name of the output directory (must exist before calling);

● text_file – text file to synthesise (each sentence on a separate line).

4.4 Disfluency detection

The multi-task self-supervised disfluency detection model code implemented within Task

T3.1 is published in the COMPRISE GitLab repository.21

4.4.1 Training

The disfluency detection model training script depends on the SRILM language model-

ling toolkit that must be acquired separately. After installation, the correct path for SRILM

should be inserted into the Makefile.

Before training you need to obtain a monolingual text corpus. Such corpus can be ob-

tained for Latvian and some other languages from the WMT2017 webpage.

Then, the corpus should then be tokenised, lowercased, filtered from punctuation and

other non-word tokens and split into files train.txt, dev.txt, and test.txt.

You will also need some amount of labelled data that should be stored in the file tune.txt

where disfluent words are tagged with “:D” and other words with “:O”. See example be-

low:

each:O utterance:O in:O separate:O line:O lowercased:O without:O punctuation:O

with:O disfluent:D words:O tagged:O uhm:D with:O D:O

To parse tune.txt file and prepare data for fine-tuning the following command should be

executed:

make tune.testtag

Finally, the training can be started:

21 https://gitlab.inria.fr/comprise/deliverables/deliverable-d33/-/tree/master/disfluency-detector

https://gitlab.inria.fr/comprise/deliverables/deliverable-d33/-/tree/master/disfluency-detector

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

37

make tune.mdl

This will train a multi-task disfluency detection model in a self-supervised way on unla-

belled training data from train.txt and then perform fine-tuning on human labelled data.

4.4.2 Inference

After model training and fine-tuning is finished, the model can be used to tag any plain

text file.

For example, in order to tag a .txt file one can use the following command:

python3 tag.py --iter tune.mdl . input.txt > output.tags

4.5 Multilingual intent detection

The scripts of the multilingual BERT-s + FFNN and BERT-s + COS methods are pub-

lished in the COMPRISE GitLab repository.22

Before running these scripts, the following Python packages must be installed: numpy,

scikit-learn, tensorflow, keras, pytorch, transformers, sentence_transformers.

The scripts BERT_s_FFNN.py and BERT_s_COS.py for BERT-s + FFNN and BERT-s

+ COS, respectively, are located in the main directory (in our case, multilingual). All the

training and test data is located in multilingual/data. The data directory contains sub-

directories for separate languages (in our case: de, en, fr, lt, lv, pt) and two text files

train_cls.txt and test_cls.txt (see Figure 11).

Figure 11. Distribution of sub-directories and files in directory data.

Each sub-directory contains two text files train.txt and test.txt with training and test in-

stances (one text per line) used in the intent detection task (a snippet of the training file

train.txt is in Figure 12). Since the order of instances in train.txt and test.txt files for dif-

ferent languages is the same, the corresponding classes are stored in multilin-

gual/data/train_cls.txt and multilingual/data/test_cls.txt files (a snippet of the training

classes file train_cls.txt is in Figure 13).

22 https://gitlab.inria.fr/comprise/deliverables/deliverable-d33/-/tree/master/multilingual-intent-
detection

https://gitlab.inria.fr/comprise/deliverables/deliverable-d33/-/tree/master/multilingual-intent-detection
https://gitlab.inria.fr/comprise/deliverables/deliverable-d33/-/tree/master/multilingual-intent-detection

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

38

Figure 12. Snippet of the train.txt file in the multilingual/data/en directory.

Figure 13. Snippet of the train_cls.txt file in the multilingual/data directory.

The script BERT_s_FFNN.py can be run with the following command (e.g., python

BERT_s_FFNN en de):

python BERT_s_FFNN.py <train_language> <test_language>

where <train_language> and <test_language> parameters determine sub-directories in

the data directory and correspond to separate languages used for training and testing

the multilingual intent detection model. The trained model is used on the evaluation da-

taset and the calculated accuracy, precision, recall and f-score values are stored in the

test_result.txt file, located in the main multilingual directory.

The script BERT_s_COS.py can be run with the following command (e.g., python

BERT_s_COS.py en pt):

python BERT_s_COS.py <train_language> <test_language>

where <train_language> and <test_language> parameters, as in the previous case, de-

termine separate training and test languages. The evaluation results are also stored in

the test_result.txt file (see the snippet in Figure 14). The first column determines the used

method (BERT-s + FFNN or BERT-s + COS), the second – languages used for training

and test; the third – sentence embedding model; the fourth, fifth, sixth and seventh col-

umns represent accuracy, precision, recall and f-score values, respectively.

Figure 14. Snippet of the test_result.txt file in the multilingual directory.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

39

It is important to notice, that the same scripts can be used in the monolingual experi-

ments. The only difference is that the <train_language> and <test_language> parame-

ters have to be equal (e.g., python BERT_s_FFNN.py en en).

5 Conclusion

This document presented the work performed in Tasks T3.1 and T3.2 of Work Package

3. This work resulted in a collection of software components, APIs and methodologies,

which is called the “Final Multilingual Interaction Library” and which enables any user to

interact with dialogue systems in any language.

A synthetic data pipeline approach was proposed to overcome the mismatch between

the output of the STT and the expected input of the MT. The idea is to imitate typical

errors in the STT output by processing the MT training data with a TTS and STT pipeline.

Several MT systems were trained and evaluated. It was noticed that using synthetic data

in MT training resulted in a clear benefit when translating STT output. The result can be

further improved if we apply special filtering to the synthetic data and also augment it

with data generated by rule-based methods, this increases the translation quality by 1.87

BLEU points over the baseline system.

A self-supervised approach was studied to address disfluency detection in the speech

recognition output. Two disfluency-tagged datasets (2,000 and 3,000 sentences) were

created for model fine-tuning and evaluation. On both datasets the self-supervised ap-

proach outperformed the baseline trained without self-supervision: 68% F1 versus 54%

F1 on the first dataset and 74% versus 72% on second dataset. The second dataset is

less ambiguous therefore both models show much better results. Also, it was observed

that: (1) adding more data improves the performance of both models, (2) the self-super-

vised approach allows us to achieve the same performance as the baseline using half

as much data.

We proposed two solutions to make dialogue systems accessible in multiple languages

when only English training data is available, which are based on monolingual (using ma-

chine translated training data) or multilingual (trained on EN data, but tested on another

language) models. The analysis of results from different angles allows us to conclude

that both solutions are equally good when sentence embeddings are used for vectorisa-

tion. Furthermore, these approaches are complementary and can be combined, which

leads to superior results for all languages.

The second half of the deliverable described the main software components of the Final

Multilingual Interaction Library. We provided documentation for the main functions of the

Tilde MT API and the Tilde.AI dialogue system. Full, up-to-date documentation of these

APIs are provided online (links can be found in the corresponding sections of the docu-

ment). We also provided descriptions for various tools developed within the research

activities, namely: synthetic data pipeline processing and filtering tools, multi-task self-

supervised disfluency detection model implementation and multilingual intent detection

model implementation.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

40

6 Bibliography

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., . . . & Negri,

M. (2016). Findings of the 2016 conference on machine translation. In Proceedings of

the First Conference on Machine Translation: Volume 2, Shared Task Papers (pp. 131-

198).

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huang, S., Huck, M.,

Koehn, P., Liu, Q., Logacheva, V., Monz, C., Negri, M., Post, M., Rubino, R., Specia, L.,

& Turchi, M. (2017). Findings of the 2017 Conference on Machine Translation (WMT17).

In Proceedings of the Second Conference on Machine Translation, Volume 2: Shared

Task Papers (pp. 169–214).

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2019). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT

2019, Minneapolis, MN, USA, 2–7 June 2019 (pp. 4171–4186).

Hassan, H., Schwartz, L., Hakkani-Tür, D., & Tür, G. (2014). Segmentation and disflu-

ency removal for conversational speech translation. In Proceedings of INTERSPEECH

(pp. 318–322).

Hendrycks, D., and Gimpel, K. 2016. Bridging nonlinearities and stochastic regularizers

with gaussian error linear units. arXiv preprint arXiv:1606.08415.

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield, K., Necker-

mann, T., . . . & Martins, A. F. (2018). Marian: Fast Neural Machine Translation in C++.

In Proceedings of the 56th Annual Meeting of the ACL, System Demonstrations (pp. 116-

121).

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), Doha, Qatar, 25–29 October 2014 (pp. 1746–1751).

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., . . . Herbst,

E. (2007). Moses: Open source toolkit for statistical machine translation. In Proceedings

of the 45th Annual Meeting of the ACL, Interactive Poster and Demonstration Sessions

(pp. 177–180).

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-Based Learning Applied

to Document Recognition; IEEE: Pasadena, CA, USA, (pp. 2278–2324).

Levenshtein, V.I. Binary Codes Capable of Correcting Deletions, Insertions, and Rever-

sals, Soviet Physics Doklady 10(8) (1966), 707–710.

McNemar, Q.M. (1947). Note on the Sampling Error of the Difference Between Corre-

lated Proportions or Percentages. Psychometrika, 12(2), 153–157.

Reimers, N & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Sia-

meseBERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural Lan-

guage Processing (EMNLP-IJCNLP) 2019, Hong Kong, China, November 2019

(pp. 3982–3992).

Salimbajevs, A., & Strigins, J. (2015). Error Analysis and Improving Speech Recognition

for Latvian language. In Proceedings of 10th International Conference on Recent Ad-

vances in Natural Language Processing (RANLP 2015) (pp. 563–569).

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

41

Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of rare words

with subword units. In Proceedings of the 54th Annual Meeting of the ACL (pp. 1715–

1725).

Simonnet, E., Ghannay, S., Camelin, N., & Estève, Y. (2018). Simulating STT errors for

training SLU systems. In Proceedings of the Eleventh International Conference on Lan-

guage Resources and Evaluation (pp. 3157-3162).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . &

Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Pro-

cessing Systems (pp. 5998-6008).

Wang S, Che W, Liu Q, Qin P, Liu T, Wang WY. Multi-Task Self-Supervised Learning for

Disfluency Detection. In: The Thirty-Fourth {AAAI} Conference on Artificial Intelligence,

{AAAI} 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Confer-

ence, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational Advances in Artificial

Intelligence, {EAAI} 2020, New York, NY, USA, February 7-12, 2020 [Internet]. {AAAI}

Press; 2020. p. 9193–200.

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

42

A Detailed experimental results

Table 8. Monolingual experiments with the BERT-w + CNN method. The table contains

averaged accuracy, precision, recall and f-score values followed by confidence inter-

vals. The best results for each language are emphasised in bold.

Language BERT model Accuracy Precision Recall F-score

EN

bert-base-cased 0.697±0.016 0.778±0.017 0.674±0.027 0.722±0.020

bert-base-uncased 0.714±0.014 0.793±0.009 0.689±0.016 0.737±0.011

bert-large-cased 0.714±0.019 0.794±0.024 0.685±0.016 0.735±0.019

bert-large-uncased 0.653±0.022 0.739±0.023 0.628±0.022 0.679±0.021

bert-base-multilingual-cased 0.703±0.019 0.782±0.017 0.672±0.019 0.723±0.018

bert-base-multilingual-uncased 0.732±0.009 0.801±0.014 0.696±0.012 0.745±0.012

DE
bert-base-multilingual-cased 0.614±0.026 0.745±0.034 0.560±0.028 0.639±0.027

bert-base-multilingual-uncased 0.624±0.020 0.748±0.019 0.578±0.025 0.652±0.022

FR
bert-base-multilingual-cased 0.640±0.014 0.743±0.020 0.601±0.014 0.665±0.009

bert-base-multilingual-uncased 0.651±0.023 0.781±0.029 0.628±0.027 0.696±0.027

LT
bert-base-multilingual-cased 0.651±0.015 0.776±0.018 0.572±0.017 0.659±0.017

bert-base-multilingual-uncased 0.653±0.025 0.774±0.025 0.569±0.025 0.656±0.024

LV
bert-base-multilingual-cased 0.651±0.018 0.783±0.027 0.612±0.021 0.687±0.020

bert-base-multilingual-uncased 0.679±0.013 0.783±0.012 0.643±0.012 0.706±0.010

PT
bert-base-multilingual-cased 0.649±0.027 0.762±0.022 0.600±0.037 0.670±0.019

bert-base-multilingual-uncased 0.632±0.015 0.725±0.022 0.597±0.026 0.655±0.024

Table 9. Monolingual experiments with the BERT-w + BERT method. For the notation

see Table 8.

Language BERT model Accuracy Precision Recall F-score

EN

bert-base-cased 0.749±0.019 0.827±0.021 0.739±0.023 0.780±0.020

bert-base-uncased 0.765±0.033 0.836±0.016 0.751±0.027 0.791±0.020

bert-large-cased 0.688±0.150 0.813±0.009 0.678±0.201 0.719±0.156

bert-large-uncased 0.782±0.005 0.828±0.014 0.776±0.010 0.801±0.010

bert-base-multilingual-cased 0.732±0.011 0.804±0.009 0.712±0.011 0.755±0.009

bert-base-multilingual-uncased 0.768±0.027 0.829±0.022 0.768±0.027 0.798±0.022

DE
bert-base-multilingual-cased 0.704±0.034 0.770±0.035 0.681±0.036 0.723±0.035

bert-base-multilingual-uncased 0.703±0.029 0.760±0.026 0.672±0.031 0.713±0.027

FR
bert-base-multilingual-cased 0.715±0.017 0.785±0.012 0.702±0.023 0.741±0.014

bert-base-multilingual-uncased 0.733±0.035 0.794±0.022 0.718±0.031 0.754±0.024

LT
bert-base-multilingual-cased 0.692±0.022 0.741±0.023 0.669±0.029 0.703±0.021

bert-base-multilingual-uncased 0.721±0.020 0.767±0.024 0.688±0.024 0.725±0.024

LV
bert-base-multilingual-cased 0.710±0.016 0.785±0.014 0.700±0.021 0.740±0.017

bert-base-multilingual-uncased 0.731±0.019 0.798±0.023 0.729±0.028 0.762±0.025

PT
bert-base-multilingual-cased 0.703±0.031 0.778±0.028 0.679±0.031 0.725±0.027

bert-base-multilingual-uncased 0.699±0.018 0.773±0.019 0.673±0.017 0.719±0.012

Table 10. Monolingual experiments with the BERT-s + FFNN method. For the notation

see Table 8.

Lang BERT model Accuracy Precision Recall F-score

EN
roberta-base-nli-stsb-mean-tokens 0.842±0.011 0.774±0.018 0.806±0.009 0.762±0.006

roberta-large-nli-stsb-mean-tokens 0.808±0.014 0.871±0.014 0.795±0.017 0.831±0.015

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

43

Lang BERT model Accuracy Precision Recall F-score

bert-large-nli-stsb-mean-tokens 0.817±0.009 0.863±0.019 0.806±0.012 0.833±0.015

distilbert-base-nli-stsb-mean-tokens 0.799±0.009 0.857±0.014 0.785±0.011 0.819±0.010

distiluse-base-multilingual-cased-v2 0.760±0.020 0.843±0.019 0.728±0.024 0.781±0.021

xlm-r-distilroberta-base-paraphrase-v1 0.806±0.011 0.872±0.011 0.793±0.015 0.831±0.011

xlm-r-bert-base-nli-stsb-mean-tokens 0.806±0.006 0.857±0.013 0.789±0.011 0.821±0.008

distilbert-multilingual-nli-stsb-quora-ranking 0.790±0.008 0.835±0.009 0.770±0.015 0.801±0.011

DE

distiluse-base-multilingual-cased-v2 0.735±0.010 0.833±0.011 0.703±0.014 0.762±0.006

xlm-r-distilroberta-base-paraphrase-v1 0.785±0.007 0.836±0.012 0.770±0.008 0.802±0.009

xlm-r-bert-base-nli-stsb-mean-tokens 0.774±0.005 0.849±0.016 0.769±0.010 0.807±0.011

distilbert-multilingual-nli-stsb-quora-ranking 0.692±0.022 0.785±0.018 0.678±0.024 0.727±0.021

FR

distiluse-base-multilingual-cased-v2 0.731±0.012 0.824±0.011 0.696±0.018 0.754±0.015

xlm-r-distilroberta-base-paraphrase-v1 0.782±0.011 0.840±0.014 0.760±0.016 0.798±0.013

xlm-r-bert-base-nli-stsb-mean-tokens 0.800±0.007 0.843±0.003 0.791±0.010 0.816±0.005

distilbert-multilingual-nli-stsb-quora-ranking 0.754±0.016 0.784±0.017 0.724±0.020 0.753±0.017

LT

distiluse-base-multilingual-cased-v2 0.640±0.005 0.776±0.011 0.571±0.010 0.658±0.006

xlm-r-distilroberta-base-paraphrase-v1 0.764±0.011 0.843±0.011 0.706±0.019 0.768±0.015

xlm-r-bert-base-nli-stsb-mean-tokens 0.732±0.021 0.803±0.018 0.692±0.024 0.744±0.022

distilbert-multilingual-nli-stsb-quora-ranking 0.751±0.010 0.825±0.021 0.718±0.008 0.768±0.013

LV

distiluse-base-multilingual-cased-v2 0.685±0.013 0.814±0.011 0.660±0.019 0.729±0.015

xlm-r-distilroberta-base-paraphrase-v1 0.789±0.007 0.869±0.004 0.756±0.013 0.809±0.007

xlm-r-bert-base-nli-stsb-mean-tokens 0.786±0.011 0.844±0.019 0.744±0.015 0.791±0.015

distilbert-multilingual-nli-stsb-quora-ranking 0.756±0.007 0.818±0.011 0.761±0.009 0.789±0.010

PT

distiluse-base-multilingual-cased-v2 0.700±0.021 0.802±0.022 0.669±0.023 0.730±0.022

xlm-r-distilroberta-base-paraphrase-v1 0.779±0.017 0.885±0.008 0.777±0.019 0.827±0.013

xlm-r-bert-base-nli-stsb-mean-tokens 0.792±0.004 0.856±0.011 0.789±0.007 0.821±0.007

distilbert-multilingual-nli-stsb-quora-ranking 0.750±0.016 0.809±0.016 0.733±0.026 0.770±0.020

Table 11. Monolingual experiments with the BERT-s + COS model. For the notation see

Table 8.

Lang BERT model Accuracy Precision Recall F-score

EN

roberta-base-nli-stsb-mean-tokens 0.764 0.833 0.748 0.788

roberta-large-nli-stsb-mean-tokens 0.757 0.837 0.752 0.793

bert-large-nli-stsb-mean-tokens 0.813 0.862 0.800 0.830

distilbert-base-nli-stsb-mean-tokens 0.757 0.841 0.744 0.790

distiluse-base-multilingual-cased-v2 0.694 0.824 0.679 0.745

xlm-r-distilroberta-base-paraphrase-v1 0.708 0.801 0.680 0.735

xlm-r-bert-base-nli-stsb-mean-tokens 0.778 0.864 0.769 0.814

distilbert-multilingual-nli-stsb-quora-ranking 0.715 0.822 0.732 0.775

DE

distiluse-base-multilingual-cased-v2 0.736 0.811 0.749 0.779

xlm-r-distilroberta-base-paraphrase-v1 0.771 0.857 0.768 0.810

xlm-r-bert-base-nli-stsb-mean-tokens 0.757 0.852 0.739 0.792

distilbert-multilingual-nli-stsb-quora-ranking 0.674 0.797 0.693 0.741

FR

distiluse-base-multilingual-cased-v2 0.688 0.777 0.683 0.727

xlm-r-distilroberta-base-paraphrase-v1 0.743 0.864 0.737 0.795

xlm-r-bert-base-nli-stsb-mean-tokens 0.771 0.863 0.761 0.808

distilbert-multilingual-nli-stsb-quora-ranking 0.701 0.830 0.717 0.769

distiluse-base-multilingual-cased-v2 0.667 0.791 0.648 0.713

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

44

Lang BERT model Accuracy Precision Recall F-score

LT

xlm-r-distilroberta-base-paraphrase-v1 0.674 0.798 0.626 0.702

xlm-r-bert-base-nli-stsb-mean-tokens 0.694 0.808 0.658 0.725

distilbert-multilingual-nli-stsb-quora-ranking 0.708 0.753 0.688 0.719

LV

distiluse-base-multilingual-cased-v2 0.653 0.798 0.681 0.735

xlm-r-distilroberta-base-paraphrase-v1 0.694 0.816 0.690 0.747

xlm-r-bert-base-nli-stsb-mean-tokens 0.743 0.827 0.723 0.772

distilbert-multilingual-nli-stsb-quora-ranking 0.667 0.749 0.719 0.734

PT

distiluse-base-multilingual-cased-v2 0.639 0.749 0.651 0.697

xlm-r-distilroberta-base-paraphrase-v1 0.778 0.870 0.776 0.820

xlm-r-bert-base-nli-stsb-mean-tokens 0.771 0.868 0.742 0.800

distilbert-multilingual-nli-stsb-quora-ranking 0.708 0.796 0.701 0.746

Table 12. Multilingual experiments (train EN) with the BERT-w + CNN model. For the

notation see Table 8.

Language BERT model Accuracy Precision Recall F-score

DE
bert-base-multilingual-cased 0.369±0.008 0.710±0.018 0.318±0.015 0.439±0.015

bert-base-multilingual-uncased 0.504±0.010 0.738±0.034 0.436±0.019 0.547±0.020

FR
bert-base-multilingual-cased 0.435±0.031 0.711±0.029 0.359±0.030 0.476±0.022

bert-base-multilingual-uncased 0.496±0.025 0.748±0.030 0.445±0.031 0.557±0.026

LT
bert-base-multilingual-cased 0.219±0.016 0.702±0.020 0.197±0.025 0.307±0.031

bert-base-multilingual-uncased 0.261±0.022 0.669±0.049 0.246±0.033 0.359±0.039

LV
bert-base-multilingual-cased 0.222±0.026 0.686±0.048 0.191±0.023 0.298±0.027

bert-base-multilingual-uncased 0.336±0.041 0.687±0.029 0.271±0.035 0.387±0.035

PT
bert-base-multilingual-cased 0.410±0.071 0.757±0.054 0.324±0.061 0.449±0.063

bert-base-multilingual-uncased 0.499±0.033 0.769±0.016 0.399±0.053 0.524±0.047

Table 13. Multilingual experiments (train EN) with the BERT-w + BERT model. For the

notation see Table 8.

Language BERT model Accuracy Precision Recall F-score

DE
bert-base-multilingual-cased 0.525±0.034 0.694±0.039 0.512±0.023 0.589±0.024

bert-base-multilingual-uncased 0.588±0.034 0.748±0.023 0.573±0.034 0.648±0.029

FR
bert-base-multilingual-cased 0.568±0.037 0.724±0.067 0.544±0.060 0.621±0.060

bert-base-multilingual-uncased 0.578±0.035 0.746±0.072 0.570±0.054 0.646±0.060

LT
bert-base-multilingual-cased 0.215±0.026 0.697±0.050 0.259±0.014 0.377±0.009

bert-base-multilingual-uncased 0.319±0.048 0.644±0.024 0.342±0.041 0.446±0.040

LV
bert-base-multilingual-cased 0.303±0.054 0.697±0.064 0.326±0.027 0.444±0.037

bert-base-multilingual-uncased 0.386±0.035 0.694±0.029 0.383±0.032 0.493±0.029

PT
bert-base-multilingual-cased 0.536±0.035 0.676±0.020 0.498±0.044 0.572±0.034

bert-base-multilingual-uncased 0.576±0.035 0.724±0.017 0.551±0.040 0.625±0.030

Table 14. Multilingual experiments (train EN) with the BERT-s + FFNN model. For the

notation see Table 8.

Lan

g

BERT model Accuracy Precision Recall F-score

DE

distiluse-base-multilingual-cased-v2 0.760±0.012 0.832±0.012 0.716±0.013 0.769±0.010

xlm-r-distilroberta-base-paraphrase-v1 0.779±0.021 0.870±0.014 0.750±0.025 0.806±0.020

xlm-r-bert-base-nli-stsb-mean-tokens 0.749±0.010 0.838±0.013 0.730±0.007 0.780±0.009

distilbert-multilingual-nli-stsb-quora-ranking 0.700±0.010 0.818±0.025 0.677±0.011 0.741±0.013

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

45

Lan

g

BERT model Accuracy Precision Recall F-score

FR

distiluse-base-multilingual-cased-v2 0.718±0.016 0.823±0.024 0.690±0.020 0.751±0.022

xlm-r-distilroberta-base-paraphrase-v1 0.794±0.003 0.878±0.012 0.774±0.004 0.823±0.004

xlm-r-bert-base-nli-stsb-mean-tokens 0.767±0.014 0.851±0.022 0.741±0.014 0.792±0.017

distilbert-multilingual-nli-stsb-quora-ranking 0.707±0.009 0.821±0.018 0.676±0.018 0.741±0.010

LT

distiluse-base-multilingual-cased-v2 0.647±0.024 0.754±0.034 0.614±0.034 0.677±0.034

xlm-r-distilroberta-base-paraphrase-v1 0.657±0.023 0.811±0.016 0.610±0.014 0.696±0.010

xlm-r-bert-base-nli-stsb-mean-tokens 0.754±0.009 0.841±0.013 0.717±0.012 0.774±0.012

distilbert-multilingual-nli-stsb-quora-ranking 0.625±0.018 0.759±0.025 0.585±0.012 0.660±0.016

LV

distiluse-base-multilingual-cased-v2 0.613±0.015 0.768±0.029 0.575±0.018 0.657±0.020

xlm-r-distilroberta-base-paraphrase-v1 0.726±0.016 0.852±0.015 0.695±0.025 0.765±0.015

xlm-r-bert-base-nli-stsb-mean-tokens 0.729±0.018 0.825±0.014 0.682±0.025 0.747±0.020

distilbert-multilingual-nli-stsb-quora-ranking 0.618±0.010 0.778±0.021 0.580±0.017 0.664±0.017

PT

distiluse-base-multilingual-cased-v2 0.738±0.019 0.853±0.014 0.714±0.026 0.777±0.020

xlm-r-distilroberta-base-paraphrase-v1 0.771±0.011 0.864±0.013 0.743±0.016 0.799±0.013

xlm-r-bert-base-nli-stsb-mean-tokens 0.771±0.011 0.875±0.006 0.742±0.009 0.803±0.007

distilbert-multilingual-nli-stsb-quora-ranking 0.699±0.007 0.800±0.017 0.675±0.012 0.732±0.012

Table 15. Multilingual experiments (train EN) with the BERT-s + COS model. For the

notation see Table 8.

Lang BERT model Accuracy Precision Recall F-score

DE

distiluse-base-multilingual-cased-v2 0.715 0.809 0.687 0.743

xlm-r-distilroberta-base-paraphrase-v1 0.764 0.841 0.736 0.785

xlm-r-bert-base-nli-stsb-mean-tokens 0.771 0.859 0.767 0.811

distilbert-multilingual-nli-stsb-quora-ranking 0.667 0.724 0.657 0.689

FR

distiluse-base-multilingual-cased-v2 0.653 0.792 0.669 0.725

xlm-r-distilroberta-base-paraphrase-v1 0.701 0.851 0.691 0.763

xlm-r-bert-base-nli-stsb-mean-tokens 0.722 0.826 0.692 0.753

distilbert-multilingual-nli-stsb-quora-ranking 0.660 0.740 0.646 0.690

LT

distiluse-base-multilingual-cased-v2 0.618 0.749 0.617 0.677

xlm-r-distilroberta-base-paraphrase-v1 0.736 0.897 0.702 0.788

xlm-r-bert-base-nli-stsb-mean-tokens 0.757 0.830 0.761 0.794

distilbert-multilingual-nli-stsb-quora-ranking 0.611 0.721 0.614 0.663

LV

distiluse-base-multilingual-cased-v2 0.576 0.727 0.599 0.657

xlm-r-distilroberta-base-paraphrase-v1 0.792 0.882 0.756 0.814

xlm-r-bert-base-nli-stsb-mean-tokens 0.778 0.842 0.748 0.792

distilbert-multilingual-nli-stsb-quora-ranking 0.597 0.760 0.623 0.685

PT

distiluse-base-multilingual-cased-v2 0.674 0.815 0.663 0.731

xlm-r-distilroberta-base-paraphrase-v1 0.743 0.859 0.723 0.785

xlm-r-bert-base-nli-stsb-mean-tokens 0.764 0.860 0.739 0.795

distilbert-multilingual-nli-stsb-quora-ranking 0.681 0.779 0.692 0.733

Table 16. Combined approach (train EN + target) with the BERT-s + FFNN model: re-

sults for the target languages (column Lang). For the other notation see Table 8.

Lang BERT model Accuracy Precision Recall F-score

DE
distiluse-base-multilingual-cased-v2 0.781±0.009 0.843±0.01

2

0.762±0.018 0.800±0.014

xlm-r-distilroberta-base-paraphrase-v1 0.829±0.014 0.880±0.00

9

0.818±0.015 0.848±0.012

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

46

Lang BERT model Accuracy Precision Recall F-score

xlm-r-bert-base-nli-stsb-mean-tokens 0.779±0.010 0.863±0.00

9

0.766±0.015 0.811±0.010

distilbert-multilingual-nli-stsb-quora-ranking 0.733±0.007 0.811±0.01

7

0.716±0.010 0.761±0.006

FR

distiluse-base-multilingual-cased-v2 0.787±0.013 0.846±0.00

7

0.765±0.020 0.803±0.014

xlm-r-distilroberta-base-paraphrase-v1 0.817±0.009 0.870±0.00

9

0.807±0.012 0.837±0.011

xlm-r-bert-base-nli-stsb-mean-tokens 0.800±0.015 0.844±0.00

8

0.791±0.014 0.817±0.011

distilbert-multilingual-nli-stsb-quora-ranking 0.785±0.009 0.820±0.01

2

0.781±0.010 0.800±0.009

LT

distiluse-base-multilingual-cased-v2 0.729±0.004 0.800±0.01

0

0.708±0.011 0.751±0.007

xlm-r-distilroberta-base-paraphrase-v1 0.814±0.018 0.875±0.01

2

0.779±0.026 0.824±0.019

xlm-r-bert-base-nli-stsb-mean-tokens 0.767±0.018 0.826±0.01

0

0.731±0.018 0.776±0.014

distilbert-multilingual-nli-stsb-quora-ranking 0.765±0.008 0.823±0.01

0

0.752±0.011 0.786±0.008

LV

distiluse-base-multilingual-cased-v2 0.739±0.020 0.824±0.03

1

0.755±0.020 0.787±0.022

xlm-r-distilroberta-base-paraphrase-v1 0.831±0.007 0.892±0.01

0

0.804±0.007 0.846±0.006

xlm-r-bert-base-nli-stsb-mean-tokens 0.800±0.019 0.864±0.01

6

0.756±0.022 0.807±0.019

distilbert-multilingual-nli-stsb-quora-ranking 0.740±0.011 0.827±0.01

4

0.738±0.013 0.780±0.012

PT

distiluse-base-multilingual-cased-v2 0.761±0.018 0.845±0.01

3

0.749±0.018 0.794±0.013

xlm-r-distilroberta-base-paraphrase-v1 0.807±0.005 0.874±0.00

7

0.793±0.008 0.831±0.007

xlm-r-bert-base-nli-stsb-mean-tokens 0.810±0.010 0.867±0.00

8

0.796±0.013 0.830±0.010

distilbert-multilingual-nli-stsb-quora-ranking 0.781±0.011 0.856±0.00

8

0.765±0.019 0.808±0.012

Table 17. Combined approach (train EN + target) with the BERT-s + COS model: results

for the target languages (column Lang). For the other notation see Table 8.

Lang BERT model Accuracy Precision Recall F-score

DE

distiluse-base-multilingual-cased-v2 0.722 0.802 0.715 0.756

xlm-r-distilroberta-base-paraphrase-v1 0.757 0.832 0.738 0.782

xlm-r-bert-base-nli-stsb-mean-tokens 0.757 0.861 0.739 0.796

distilbert-multilingual-nli-stsb-quora-ranking 0.681 0.802 0.699 0.747

FR

distiluse-base-multilingual-cased-v2 0.688 0.764 0.681 0.720

xlm-r-distilroberta-base-paraphrase-v1 0.743 0.859 0.730 0.789

xlm-r-bert-base-nli-stsb-mean-tokens 0.778 0.871 0.773 0.819

distilbert-multilingual-nli-stsb-quora-ranking 0.715 0.836 0.725 0.776

LT

distiluse-base-multilingual-cased-v2 0.674 0.811 0.681 0.741

xlm-r-distilroberta-base-paraphrase-v1 0.674 0.798 0.626 0.702

xlm-r-bert-base-nli-stsb-mean-tokens 0.694 0.816 0.658 0.728

distilbert-multilingual-nli-stsb-quora-ranking 0.708 0.753 0.688 0.719

LV

distiluse-base-multilingual-cased-v2 0.653 0.757 0.681 0.717

xlm-r-distilroberta-base-paraphrase-v1 0.694 0.816 0.690 0.747

xlm-r-bert-base-nli-stsb-mean-tokens 0.750 0.831 0.735 0.780

distilbert-multilingual-nli-stsb-quora-ranking 0.667 0.749 0.719 0.734

PT

distiluse-base-multilingual-cased-v2 0.646 0.753 0.655 0.701

xlm-r-distilroberta-base-paraphrase-v1 0.771 0.854 0.767 0.808

xlm-r-bert-base-nli-stsb-mean-tokens 0.792 0.866 0.767 0.814

distilbert-multilingual-nli-stsb-quora-ranking 0.701 0.795 0.699 0.744

Table 18. Combined approach (train all) with the BERT-s + FFNN model: results for the

target languages (column Lang). For the other notation see Table 8.

Lang BERT model Accuracy Precision Recall F-score

distiluse-base-multilingual-cased-v2 0.790±0.008 0.836±0.015 0.786±0.012 0.810±0.013

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

47

Lang BERT model Accuracy Precision Recall F-score

EN

xlm-r-distilroberta-base-paraphrase-v1 0.811±0.007 0.854±0.007 0.799±0.011 0.826±0.007

xlm-r-bert-base-nli-stsb-mean-tokens 0.811±0.023 0.851±0.024 0.796±0.024 0.823±0.022

distilbert-multilingual-nli-stsb-quora-ranking 0.781±0.009 0.848±0.009 0.750±0.011 0.796±0.008

DE

distiluse-base-multilingual-cased-v2 0.785±0.004 0.835±0.006 0.772±0.010 0.802±0.007

xlm-r-distilroberta-base-paraphrase-v1 0.831±0.009 0.872±0.013 0.803±0.010 0.836±0.011

xlm-r-bert-base-nli-stsb-mean-tokens 0.761±0.010 0.825±0.004 0.746±0.015 0.784±0.008

distilbert-multilingual-nli-stsb-quora-ranking 0.742±0.012 0.800±0.018 0.718±0.017 0.756±0.010

FR

distiluse-base-multilingual-cased-v2 0.771±0.007 0.844±0.009 0.762±0.010 0.801±0.008

xlm-r-distilroberta-base-paraphrase-v1 0.829±0.013 0.880±0.013 0.820±0.019 0.849±0.016

xlm-r-bert-base-nli-stsb-mean-tokens 0.818±0.007 0.876±0.004 0.803±0.012 0.838±0.005

distilbert-multilingual-nli-stsb-quora-ranking 0.728±0.005 0.807±0.009 0.727±0.010 0.765±0.009

LT

distiluse-base-multilingual-cased-v2 0.733±0.013 0.818±0.008 0.744±0.014 0.780±0.011

xlm-r-distilroberta-base-paraphrase-v1 0.853±0.005 0.891±0.005 0.846±0.008 0.868±0.005

xlm-r-bert-base-nli-stsb-mean-tokens 0.793±0.016 0.841±0.016 0.757±0.024 0.797±0.020

distilbert-multilingual-nli-stsb-quora-ranking 0.754±0.005 0.836±0.008 0.727±0.015 0.778±0.008

LV

distiluse-base-multilingual-cased-v2 0.729±0.004 0.825±0.008 0.739±0.004 0.780±0.004

xlm-r-distilroberta-base-paraphrase-v1 0.775±0.013 0.858±0.009 0.746±0.010 0.798±0.010

xlm-r-bert-base-nli-stsb-mean-tokens 0.775±0.009 0.835±0.021 0.746±0.014 0.788±0.015

distilbert-multilingual-nli-stsb-quora-ranking 0.656±0.013 0.745±0.021 0.658±0.016 0.699±0.016

PT

distiluse-base-multilingual-cased-v2 0.758±0.008 0.839±0.009 0.756±0.013 0.795±0.011

xlm-r-distilroberta-base-paraphrase-v1 0.813±0.009 0.874±0.005 0.791±0.015 0.830±0.006

xlm-r-bert-base-nli-stsb-mean-tokens 0.792±0.004 0.851±0.019 0.776±0.014 0.812±0.010

distilbert-multilingual-nli-stsb-quora-ranking 0.700±0.015 0.819±0.021 0.678±0.018 0.742±0.015

Table 19. Combined approach (train all) with the BERT-s + COS model: results for the

target languages (column Lang). For the other notation see Table 8.

Lang BERT model Accuracy Precision Recall F-score

EN

distiluse-base-multilingual-cased-v2 0.694 0.802 0.714 0.755

xlm-r-distilroberta-base-paraphrase-v1 0.708 0.837 0.674 0.747

xlm-r-bert-base-nli-stsb-mean-tokens 0.757 0.838 0.726 0.778

distilbert-multilingual-nli-stsb-quora-ranking 0.757 0.808 0.749 0.778

DE

distiluse-base-multilingual-cased-v2 0.694 0.813 0.692 0.748

xlm-r-distilroberta-base-paraphrase-v1 0.750 0.817 0.730 0.771

xlm-r-bert-base-nli-stsb-mean-tokens 0.757 0.825 0.730 0.774

distilbert-multilingual-nli-stsb-quora-ranking 0.701 0.770 0.680 0.722

FR

distiluse-base-multilingual-cased-v2 0.681 0.790 0.686 0.734

xlm-r-distilroberta-base-paraphrase-v1 0.722 0.820 0.717 0.765

xlm-r-bert-base-nli-stsb-mean-tokens 0.771 0.862 0.755 0.805

distilbert-multilingual-nli-stsb-quora-ranking 0.688 0.767 0.683 0.722

LT

distiluse-base-multilingual-cased-v2 0.604 0.740 0.607 0.667

xlm-r-distilroberta-base-paraphrase-v1 0.715 0.821 0.672 0.739

xlm-r-bert-base-nli-stsb-mean-tokens 0.708 0.785 0.683 0.731

distilbert-multilingual-nli-stsb-quora-ranking 0.646 0.749 0.650 0.696

LV

distiluse-base-multilingual-cased-v2 0.604 0.759 0.636 0.692

xlm-r-distilroberta-base-paraphrase-v1 0.688 0.807 0.648 0.718

xlm-r-bert-base-nli-stsb-mean-tokens 0.722 0.855 0.707 0.774

distilbert-multilingual-nli-stsb-quora-ranking 0.646 0.780 0.671 0.721

GA Nº: 825081 – COMPRISE – D3.3 Final multilingual interaction library

48

Lang BERT model Accuracy Precision Recall F-score

PT

distiluse-base-multilingual-cased-v2 0.688 0.808 0.682 0.740

xlm-r-distilroberta-base-paraphrase-v1 0.750 0.853 0.745 0.796

xlm-r-bert-base-nli-stsb-mean-tokens 0.785 0.852 0.781 0.815

distilbert-multilingual-nli-stsb-quora-ranking 0.674 0.786 0.684 0.731

	1 Introduction
	2 Integration of Machine Translation and Speech-to-Text
	2.1 Synthetic data pipeline
	2.2 Data
	2.3 Filtering of the synthetic data
	2.4 Rule-based synthetic noise generation
	2.5 Speech translation evaluation
	2.6 Disfluency detection
	2.7 Summary of results

	3 Integration of Machine Translation and dialogue
	3.1 Intent detection data
	3.2 Methodology
	3.3 Experiments and results
	3.3.1 Monolingual experiments
	3.3.2 Training multilingual models on English only
	3.3.3 Training multilingual models on both English and target language
	3.3.4 Training multilingual models on all languages
	3.3.5 Summary of results

	3.4 Conclusions and future work

	4 Software components
	4.1 Machine translation
	4.1.1 Machine Translation API
	4.1.1.1 Authentication
	4.1.1.2 List of available systems
	4.1.1.3 Translation

	4.1.2 Containerised Machine Translation systems
	4.1.3 Terms of Use

	4.2 Dialogue Management
	4.2.1 Dialogue management API
	4.2.1.1 Authentication
	4.2.1.2 Start a conversation
	4.2.1.3 Send an activity to the dialogue system
	4.2.1.4 Receive activities from the dialogue system

	4.2.2 Spoken language understanding
	4.2.2.1 Authentication
	4.2.2.2 Intent detection
	4.2.2.3 Entity recognition

	4.2.3 Terms of Use

	4.3 Synthetic data pipeline tools
	4.4 Disfluency detection
	4.4.1 Training
	4.4.2 Inference

	4.5 Multilingual intent detection

	5 Conclusion
	6 Bibliography
	A Detailed experimental results

