

Cost effective, Multilingual, Privacy-driven voice-enabled Services

www.compriseh2020.eu

Call: H2020-ICT-2018-2020

Topic: ICT-29-2018
Type of action: RIA

Grant agreement Nº: 825081

WP Nº5: Cloud-based platform for
multilingual voice interaction

Deliverable Nº5.4: Initial Platform Demonstrator

Lead partner: TILDE

Version Nº: 1.0

Date: 30/11/2020

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

2

Document information
Deliverable Nº and title: D5.4 - Initial platform demonstrator
Version Nº: 1.0
Lead beneficiary: TILDE
Author(s): Askars Salimbajevs, Raivis Skadiņš (TILDE)
Reviewers: Thomas Kleinbauer (USAAR), Youssef Ridene (NETF)
Submission date: 30/11/2020
Due date: 30/11/2020
Type1: DEM
Dissemination level2: PU

Document history
Date Version Author(s) Comments

10/11/2020 0.1 Askars Salimbajevs,
Raivis Skadiņš

Initial draft version

17/11/2020 0.2 Askars Salimbajevs,
Raivis Skadiņš

Revised version following the re-
viewers’ comments

30/11/2020 1.0 Emmanuel Vincent, Akira
Campbell

Final version reviewed by the Coor-
dinator and the project manager

1 R: Report, DEC: Websites, patent filling, videos; DEM: Demonstrator, pilot, prototype; ORDP: Open Re-
search Data Pilot; ETHICS: Ethics requirement. OTHER: Software Tools
2 PU: Public; CO: Confidential, only for members of the consortium (including the Commission Services)

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

3

Document Summary
This deliverable describes the implementation of the initial demonstrator of the COM-
PRISE Cloud Platform. The document contains an overview of the implemented data
collection and curation features, a description of the unified speech-to-text (STT) model
training recipe and a high-level documentation of the Cloud Platform architecture and
the implemented application programming interface (API). Instructions on how to deploy
and use the Cloud Platform are provided as well.

The described version of the COMPRISE Cloud Platform allows users to upload, store
and manage data of two types: (1) speech and (2) text. For each uploaded audio or text
segment, a label or annotation can be added. The current version of the Cloud Platform
also implements downloading of trained STT and spoken language understanding (SLU)
models, as well as scheduling training of new models. However, only the STT model
training recipe — a unified training recipe for the six languages (English, French, Ger-
man, Latvian, Lithuanian, and Portuguese) of the COMPRISE project — is currently im-
plemented. In the future, support for other types of data and models may be added.

The main users of the COMPRISE Cloud Platform will be Developers using the COM-
PRISE SDK (WP4), which will exchange data and models via a REST API. The COM-
PRISE Cloud Platform fills a gap in the current ecosystem: existing resource repositories
are good for speech resource description, dissemination, sharing, and distribution, but
to the best of our knowledge no platform currently facilitates speech data creation, label-
ling, and curation.

The COMPRISE Cloud Platform also includes a web-based user interface (UI) which
allows users to sign up, perform general operations and access the documentation.

The source code of the COMPRISE Cloud Platform is available on the COMPRISE
Gitlab, 3 and it has been deployed as an initial demonstrator at https://comprise-
dev.tilde.com.

3 https://gitlab.inria.fr/comprise/comprise-cloud-based-platform

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

4

Table of contents
1. Introduction 5	
2. Initial Platform Demonstrator 5	

2.1. Overview 5	
2.2. Data collection and curation features 6	
2.3. Unified training recipe 7	
2.4. Pretrained models and pre-collected data 8	

3. COMPRISE Cloud Platform architecture 9	
3.1. Overview 9	
3.2. API service 11	

3.2.1. Authentication and authorisation 11	
3.2.2. Data API 12	
3.2.3. Model API 14	

3.3. Model training 16	
3.4. Web UI 17	

4. Deployment 17	
4.1. Prerequisites 17	
4.2. Configuration 17	

4.2.1. API service 18	
4.2.2. Web UI 18	

4.3. Building Docker images 18	
4.3.1. Container registry 18	
4.3.2. Building images and pushing to registry 18	

4.4. Deploying on Kubernetes 19	
5. How to use 20	

5.1. Signing up 20	
5.2. Acquiring API keys 21	
5.3. Data collection 22	
5.4. Data annotation 23	
5.5. Sharing data between applications 24	
5.6. Model training 25	

6. Conclusion 26	
	

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

5

1. Introduction
The COMPRISE Cloud Platform is developed within the scope of Work Package 5 (WP5)
“Cloud-based platform for multilingual voice interaction”. The objectives of this work
package are to:

● bring together the results of WP2, WP3 and WP4 to develop a cloud-based plat-
form to collect users’ neutralised speech and text data, and curate them.

● provide access to the user-independent Speech-To-Text (STT) and Spoken Lan-
guage Understanding (SLU) models trained on this data as a service via a web
service application programming interface (API).

The current deliverable was developed in the scope of Task T5.4. “Initial platform de-
monstrator”. The goal of this task is to implement a fully functional platform demonstrator
that is populated with a few initial datasets and trained models and deploy it in a working
environment for use in other WPs.

For the sake of completeness, this reports briefly recalls Cloud Platform functionalities
which had been presented in Deliverable D5.3 “Data collection and curation features of
the platform” (submitted to the European Commission on 31/08/2020), and introduces in
more detail new functionalities which have been developed since then.

The report consists of the following sections. Section 2 informally describes the initial
COMPRISE Cloud Platform demonstrator, lists data collection and curation features,
pre-collected data and pre-trained model, and describes the Unified training recipe for
STT model training. Section 3 describes the architecture of the initial COMPRISE Cloud
Platform demonstrator and provides a high-level description of authentication, authori-
sation, data collection, model training and platform APIs. Section 4 provides information
on the configuration and deployment of the Cloud Platform. Section 5 describes how the
COMPRISE Cloud Platform can be used from the Developer’s point of view. Finally,
Section 6 is devoted to conclusions.

2. Initial Platform Demonstrator

2.1. Overview
Developers of voice-enabled Apps (e.g., a personal assistant) naturally strive to provide
the best possible user experience. This can be potentially solved by using domain-spe-
cific STT and/or SLU models for the particular usage domain of the App. However, this
requires the collection of user data and specific knowledge on how to train STT and/or
SLU models. The COMPRISE SDK and the COMPRISE Cloud Platform aim to help De-
velopers solve this problem.

The standard workflow is as follows. The Developer signs up to the COMPRISE Cloud
Platform and acquires an API key by registering their App into the Cloud Platform. Next,
the Developer embeds this API key into the App and the COMPRISE Client Library col-
lects speech and text data from users of the App.

The domain-specific neutral data collected for each App and each language is grouped
into separate corpora: speech data is appended to the App’s speech corpus, and text
data is appended to the App’s text corpus.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

6

The COMPRISE Cloud Platform is provided so that the Developer can manage the col-
lected data, process the collected data (e.g., apply machine translation) and train do-
main-specific user-independent STT and/or SLU models.

Since the collected data can be annotated, Developers shall be able to add annotations
to the collected corpora themselves or give Data Annotators employed by the Devel-
oper’s company access to the collected corpora. Data Annotators use the COMPRISE
Cloud Platform to label domain-specific neutral speech and text data. They are granted
access to speech or text corpora by the Developers via a specific URL that contains an
authorisation key.

Each Data Annotator can access multiple corpora simultaneously. For speech corpora,
Data Annotators provide a written transcription of each audio recording. For text corpora,
Data Annotators label each user prompt in terms of intent or next dialogue state. The
labelled data can then be used for training domain-specific models.

Two types of authentication mechanisms are implemented to provide multiple access
levels for different types of users (tenants):

● OpenID Connect authentication for Developers and Administrators using an ex-
ternal authentication service.

● API key authentication for voice-enabled Apps and Data Annotators.

This allows the Cloud Platform to (1) improve security by separating frequently used
functions from high-privilege access items, and (2) simplify authentication and authori-
sation for mobile Apps and Data Annotators.

The COMPRISE Cloud Platform also makes sure that Developers and mobile Apps can
manipulate only resources that they own. By default, resources created by other ac-
counts are not visible nor accessible. However, there is mechanism that allows Devel-
opers to grant other Developers access to their collected training data (see Section 5.5).

2.2. Data collection and curation features
The following data collection and curation features were developed in the COMPRISE
Cloud Platform for Developers using COMPRISE in their Apps:

● new Developer account registration;
● authentication and authorisation;
● registration of new Apps and API key generation;
● changing or generating new API keys;
● upload and download of speech and text data;
● deleting speech and text data from the Platform;
● adding or editing annotations for each uploaded audio or text;
● creating a specific URL that allows Data Annotators to add or edit data annota-

tions;
● invalidating all previous Data Annotator URLs and generating new ones;
● a Web User Interface (UI) that simplifies access to all of these features.

Data Annotators do not have any accounts on the COMPRISE Cloud Platform. They
access the COMPRISE Cloud Platform by using a special URL that is provided by the
Developers. Each such URL gives access to data collected by each particular App. The
URL contains a special “annotation key” of the App, that is generated in such a way that

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

7

is impossible to guess or predict by a third-party. If compromised, old URLs can be easily
replaced with a new one, by re-generating an annotation key. Also, Developers can
change the key-part of the URL manually.

The following data management features have been implemented for Data Annotators:

● retrieving speech and text data collected by a particular App;
● adding or editing annotations for each uploaded audio or text;
● a Web UI that simplifies access to all of these features.

2.3. Unified training recipe
Speech-to-Text (STT) model training in the initial platform demonstrator is implemented
by a Unified training recipe. The recipe is based on Kaldi4 and performs the following
training steps:

● Preparation of pronunciation lexicon;
● Mel frequency cepstral coefficient (MFCC) feature extraction;
● N-gram language model training;
● Hidden Markov model - Gaussian mixture model (HMM-GMM) acoustic model

training for the generation of alignments;
● I-vector extractor training and i-vector extraction;
● Data augmentation by speed-perturbation;
● Neural network acoustic model training;
● Compilation of traditional and lookahead decoding graphs.

The entry point of the recipe expects a single argument — a language code in ISO 639-
1 format. The recipe is designed to train models for English, French, German, Latvian,
Lithuanian and Portuguese languages.

The pronunciation lexicon for all words is generated using the grapheme-to-phoneme
converter from the open-source ESpeak5 synthesiser.

Currently, a tri-gram language model is trained on speech segments using the kaldi_lm
language modelling tools. The language model training scripts assumes that

● Spoken noise, if available in transcripts, is annotated in square brackets, e.g.
[laughter], [cough], [noise], etc.

● Partially spoken or non-intelligible words, if available in transcripts, are annotated
in triangular brackets, e.g. <compu...>.

The acoustic model training script is based on the COMPRISE recipe for the Let’s Go
dataset,6 which follows the classic Kaldi nnet3 chain model training recipe. Before per-
forming HMM-GMM training, the data is split into validation and training datasets. Then,
the training dataset is split up further into smaller parts. The idea is that initial models do
not need large amounts of data and can be trained on smaller datasets, therefore making
the training faster. The final HMM-GMM model is a triphone model with Linear Discrimi-
nant Analysis - Maximum Likelihood Linear Transform (LDA+MLTT) and is trained on all
available training data. Hyperparameters (senone count, number of Gaussians, etc.) are

4 Kaldi Speech Recognition Toolkit. https://kaldi-asr.org/
5 eSpeak: Speech Synthesiser. http://espeak.sourceforge.net/
6 https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning/-/tree/mas-
ter/egs/letsgo-15d

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

8

selected depending on the amount of data. Currently, there are two possible hyperpa-
rameter configurations:

• “Small” – configuration for datasets smaller than 80 hours.
• “Medium” – configuration for datasets between 80 and 190 hours.
• “Large” – configuration for datasets larger than 190 hours.

Next, the i-vector extractor is trained on a subset of the acoustic model training data.
Then this i-vector extractor is used to prepare i-vectors for the whole training set.

The recipe trains a Kaldi chain factorised time delay neural network (TDNN-F) acoustic
model. It assumes that at least one GPU is available on the training machine, otherwise
the training will fail. There are two configuration files that describe the neural network
architecture and training hyperparameters. Depending on the amount of training data,
the recipe can choose one or another:

• “Small” – configuration for datasets smaller than 50 hours.
• “Large” – configuration for datasets larger than 50 hours.

Finally, several decoding graphs are created using the trained acoustic and language
models. The recipe compiles a baseline Kaldi HCLG graph and also two graphs
(HCLr+Gr and HCLr+Gr with composition from ARPA) for a lookahead composition dur-
ing decoding (this reduces both the graph size and the decoding memory footprint, and
thus enables recognition on less powerful hardware).

On average across all languages, the total training time is in the order of 5 hours on a
modern compute node with two Nvidia 2080 Ti GPUs and 48 effective CPU threads. It
can take up to 3 days on a less powerful platform.

The model is packaged into a single tar.gz file containing the following structure:

● model/tdnn – acoustic model.
● model/tdnn_online/conf – configuration files for Kaldi online decoding.
● model/tdnn_online/ivector_extractor – ivector extractor.
● model/graph – decoding graph (both for online and offline decoding).
● model/graph_lookahead – small decoding graph with a lookahead composition

(currently offline decoding only).
• model/graph_lookahead_arpa – even smaller decoding graph with a lookahead

composition with ARPA (currently offline decoding only).

2.4. Pretrained models and pre-collected data
The initial platform demonstrator is populated with pretrained speech recognition models
and pre-collected general speech training data for the 6 languages of the COMPRISE
project, which Developers can use for a quick start without any domain-specific data.

Later, when enough in-domain data is collected, Developers can train adapted in-domain
models and replace the pre-trained models.

In order to access the pre-collected data, the Developer should use the App data sharing
feature (a description can be found in Section 3.2.2 and in Section 5.5). Table 1 lists the
pre-collected datasets and access credentials.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

9

Table 1: Application management endpoint.

Language Data source Application ID Share key

English CommonVoice 5ec05f9163883551daebe823 commonvoice-en

French CommonVoice 5f7ee867ff13b782c70aea0e commonvoice-fr

German CommonVoice 5f7ee725ff13b782c70aea0d commonvoice-de

Latvian Tilde 5f802f5a4382d263452b58de lsrc

Lithuanian Tilde 5f85612bed2d8fee320b5e7d liepa

Portuguese CommonVoice 5f7713ed9406e54a21c754e7 commonvoice-pt

Pre-trained models can be accessed using the Model API (Section 3.2.3) and the cre-
dentials listed in Table 2.

Table 2: Application management endpoint.

Language Application ID AppKey

English 5faa8210b7540802f1f2832d vosk-small-en

French 5faa8230b7540802f1f2832e vosk-small-fr

German 5faa825ab7540802f1f2832f vosk-small-de

Latvian 5faa9506b7540802f1f28331 latvian-small-stt

Lithuanian 5faa9539b7540802f1f28332 lithuanian-small-stt

Portuguese 5faa828db7540802f1f28330 vosk-small-pt

3. COMPRISE Cloud Platform architecture

3.1. Overview

The COMPRISE Cloud Platform is designed to work in a cloud environment as a collec-
tion of web services. As seen in Figure 1, the COMPRISE Cloud Platform consists of
four main services:

● An API service which provides an external API for all features of the platform
(data collection, model training, etc.)

● Training Docker containers which provide STT and SLU model training function-
ality. For Machine Translation (MT) of the training data, an external machine
translation service will be used: Tilde MT.

● A Web UI which provides a simple UI for general Cloud Platform functionalities
like registering Apps, corpus annotation, triggering model training, etc.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

10

● A queue service based on RabbitMQ7 and KEDA8. This service manages the
training job queue and is responsible for starting training Docker containers when
training is requested.

Figure 1: Cloud Platform architecture.

These services are designed to run as Docker containers in a Kubernetes cluster. Multi-
ple replicas of the API, the training and Web UI services can be run simultaneously.
RabbitMQ can also be configured for redundancy and clustering. Such a solution enables
COMPRISE Cloud Platform operators to set up a highly available and scalable infra-
structure.

There is a Docker image for each training recipe. All training images are based on a “Job
Wrapper” image which provides the following functionalities:

● download training data and annotations from the cloud storage service;
● start a /job.sh script which is to be overridden with actual training;
● create data directories in Kaldi format if necessary;
● collect trained models and upload them to the cloud storage service.

For future maintainability, the implementation relies on open standards, mainstream
technologies, existing cloud services and components, such as Docker, Kubernetes,
RabbitMQ and KEDA. The COMPRISE Cloud Platform also relies on the following ex-
ternal services:

● An external authentication service, which authenticates users using the standard
OpenID Connect protocol. This enables us to use high-quality existing authenti-
cation solutions and cloud providers. Currently, the system is using the Azure
B2C service.

7 https://www.rabbitmq.com/
8 https://github.com/kedacore/keda

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

11

● An external storage service, which provides scalable and reliable object storage.
Currently, the Azure Blob storage is being used. However, the COMPRISE Cloud
Platform is designed so that it does not rely on specific Azure Blob features. The
Azure interface code is separated into its own submodule so that it can be easily
replaced.

● An external database service, which provides a database for storing App and
model metadata. In the initial platform demonstrator, the Azure Cosmos DB is
being used, but the platform can use any other MongoDB database.

To efficiently balance the load between services and avoid unnecessary resource con-
sumption, Cloud Platform API clients upload/download data to/from the storage service
directly without the API service acting as an intermediary. This is achieved by using spe-
cial signed URLs that grant upload/download access for a particular amount of time. This
feature is not unique to the Azure Blob storage service. It can also be found in Amazon
S3 and other cloud storage services.

The source code of the COMPRISE Cloud Platform is available on the COMPRISE
GitLab9 and is structured as follows:

● examples/fakejob - example of a Docker image based on a job wrapper;
● kubernetes - example Kubernetes configuration files;
● src - API service and training job wrapper source code;
● web-ui - Web UI source code.

The source code of the Unified training recipe is published in a separate repository in the
COMPRISE GitLab10.

3.2. API service

3.2.1. Authentication and authorisation
Authentication is implemented as described in Deliverable D5.2 “Platform hardware and
software architecture”.

The API service implements multiple levels of access for the API. These access levels
are implemented by having two types of authentication mechanisms:

● OpenID Connect authentication for Developers and Administrators using an ex-
ternal authentication service;

● API key authentication for mobile Apps and Data Annotators.

Depending on the authentication method, access to different API methods is provided
(see Section 3.2.2 for details).

The COMPRISE Cloud Platform owner can set up an OpenID Connect compatible au-
thentication service either by themselves or by using external service providers. How-
ever, Developers and Administrators must sign up through the COMPRISE Cloud Plat-
form login page. Depending on the service provider and configuration, an approval from
the COMPRISE Cloud Platform owner might be required. The current version of the

9 https://gitlab.inria.fr/comprise/comprise-cloud-based-platform
10 https://gitlab.inria.fr/comprise/comprise-stt-training-recipe

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

12

COMPRISE Cloud Platform has been tested to work with the Azure B2C authentication
service.

After successful authentication via OpenID Connect, Developers and Administrators ac-
quire a JSON Web Token that is added to each API call and grants access to the COM-
PRISE Cloud Platform.

Administrators have access to all API methods for all resources on the COMPRISE
Cloud Platform, while Developers only have access to API methods for resources (reg-
istered Apps, speech and text) that they have created. Resources created by other ac-
counts are neither visible nor accessible.

The current COMPRISE Cloud Platform version implements two alternative authorisation
methods. The first method uses a text file which stores the mapping between user IDs
and roles (Administrator, Developer, none). The COMPRISE Cloud Platform owner
grants access to the COMPRISE Cloud Platform by adding user IDs to this file. An alter-
native implementation uses the Azure Active Directory service and maps Active Directory
user groups for the Developer and Administrator roles. The COMPRISE Cloud Platform
owner grants access to the COMPRISE Cloud Platform by moving users between
groups.

Mobile Apps (created by Developers) and Data Annotators authenticate via API keys:

● mobile Apps use an AppKey to access limited COMPRISE Cloud Platform func-
tionality;

● Data Annotators use an AnnotatorKey to label collected data.

The AppKey or the AnnotatorKey should be supplied to the API calls by appending query
?api_key=<AppKey or AnnotatorKey> to the API endpoint URL.

3.2.2. Data API
All data collection and curation features can be accessed via a REST API. This API is
documented using the OpenAPI specification standard to simplify the adoption of the
COMPRISE Cloud Platform by partners and future users.

The API documentation is dynamically generated by the API service from the source
code and available through a special URL, e.g., http://comprise-dev.tilde.com/v1al-
pha/.well-known/service-desc. In this section, we provide a high-level API description.

For API versioning each endpoint is prefixed with an API version, e.g. http://comprise-
dev.tilde.com/v1/<endpoint> or http://comprise-dev.tilde.com/v2/<endpoint>. At the mo-
ment of writing, the initial platform demonstrator provides v1alpha API, which is de-
scribed in the sections below.

Application registration and management are provided by the /v1alpha/applications end-
point (see Table 3).

Table 3: Application management endpoint.

Method and URL Access Description

GET
/applications

Developer
Administrator

Retrieve the list of Apps to
which the user has access.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

13

Returns: JSON, list of IDs and
names.

GET
/applications/<id>

Developer
Administrator
Mobile App (AppKey)

Get metadata for App <id>.
Returns: application JSON
(see below).

POST
/applications

Developer
Administrator

Create a new App and specify
its metadata.
Input: application JSON.

PUT
/applications/<id>

Developer
Administrator

Update metadata for App
<id>.
Input: application JSON.

DELETE
/applications/<id>

Developer
Administrator

Remove App <id>.

Each App is represented by a JSON object, which contains the following metadata:

{
 "name" : "string, name of the application",
 "description" : "string, optional description",
 "language" : "string, language of the application (ISO 639-1)",
 "app_key" : "string, API access key for mobile app",
 "annotator_key" : "string, access key for Data Annotators",
 "share_key" : "string, access key for sharing training data ",
 "speech_upload_url" : "string, direct URL for speech segment up-
load",
 "text_upload_url" : "string, direct URL for speech segment upload",
 "owner_id" : "string, ID of application owner, automatically as-
signed",
 "id" : "string, automatically generated ID of application"
}

The uploading of Speech and text data are performed via unique upload URLs from the
JSON App. These URLs are generated automatically when a JSON App is requested
and provide direct access for uploading speech or text data to the storage service. They
are valid for a single upload only and should be updated before uploading the next data
segment.

The uploaded speech and text segments can be managed via endpoints /v1alpha/appli-
cations/<id>/speech and /v1alpha/applications/<id>/text. Since these endpoints are sym-
metrical, here we describe only the former (see Table 4).

Table 4: Speech data management endpoint.

Method and URL Access Description

GET
/applications/<id>/speech

Developer
Administrator
Annotator (AnnotatorKey)

Retrieve list of speech seg-
ments in the speech corpus
of App <id>.
Returns: segment JSON
(see below).

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

14

GET
/applica-
tions/<id>/speech/<utt_id>

Developer
Administrator
Annotator (AnnotatorKey)

Download speech segment
<utt_id> or annotations
(specified by the query pa-
rameter).
Returns: segment JSON.

DELETE
/applications/<id>/speech

Developer
Administrator

Delete utterances from the
speech corpus of App <id>.
Optional input: array of
<utt_id> to delete. If no list is
specified, the whole corpus is
deleted.

DELETE /applica-
tions/<id>/speech/<utt_id>

Developer
Administrator

Delete speech segment
<utt_id>.

Each speech segment is represented by the following JSON declaration:

{
 "annotation_url": "string, direct URL to annotation file",
 "audio_url": "string, direct URL to audio file",
 "id": "string, ID of the speech segment (utt_id)"
}

Both URLs are generated automatically upon request and provide direct access to the
storage service so that the API service does not act as a proxy during audio downloads.
The generated URLs have an expiration time so that only authorised users can access
the collected data.

Annotations (transcriptions, SLU labels, etc.) can be added by calling PATCH /v1al-
pha/applications/<id>/speech/<utt_id> for speech segments or PATCH /v1alpha/appli-
cations/<id>/text/<utt_id> for text segments.

For speech segments, the request body is expected to be in JSON format:

{
 "text": "string, speech segment transcription"
}

For text segments, the request body is expected to be in JSON format as well:

{
 "text": "string, intent or other label"
}

3.2.3. Model API
The collected data can be used to train STT models via API requests to the /v1alpha/ap-
plications/<id>/models/ASR endpoint and SLU models via requests to the /v1alpha/ap-
plications/<id>/models/NLU endpoint. The API allows training of models on data col-
lected by a particular App and also using collected data from other Apps.

Since STT and SLU training endpoints are symmetrical, here we only describe the former
(see Table 5).

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

15

Table 5: STT model training endpoint.

Method and URL Access Description

GET
/applications/<id>/mod-
els/ASR

Developer
Administrator
Mobile App (AppKey)

Retrieve list of STT models
for App <id>.
Returns: JSON containing
STT model metadata (see
below).

GET /applica-
tions/<id>/mod-
els/ASR/<m>

Developer
Administrator
Mobile App (AppKey)

Download STT model <m>.
Returns: binary model file.

POST /applica-
tions/<id>/models/ASR

Developer
Administrator

Train new STT model using
corpus “/applica-
tions/<id>/speech”.
Input: training recipe JSON

DELETE /applica-
tions/<id>/mod-
els/ASR</m>

Developer
Administrator

Delete STT model <m>.

Both STT and SLU model descriptions contain the following JSON-encoded metadata:

{
 "created": "date, model training request date",
 "id": "string, automatically assigned ID of the model",
 "is_mt": “bool, is this model trained on MT data, automatically
assigned”,
 "latest": “bool, automatically assigned if model is the latest
for the given app”,
 "recipe": "string, name of the training recipe used to train a
model",
 "status": "string, model status",
 "trained": "date, model training date"
}

To request model training, the following JSON-encoded requests should be posted to
the STT or SLU endpoint:

{
 "additional_corpora": [
 {
 "app_id": "string, ID of the application",
 "share_key": "string, share key"
 }
],
 "recipe": "string, name of the training recipe"
}

Additional training data from other Apps can be requested via the “additional_corpora”
list, where you can list Apps from which you would like to use the data. For each App in

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

16

the list, Developers should provide the correct “share_key” which grants access to the
data.

Available recipe names are not predefined and depend on each specific configuration of
the COMPRISE Cloud Platform. The API service creates a training request in the job
queue corresponding to the given recipe. When such a recipe handler is configured,
KEDA will start a Kubernetes job which will perform the training. The initial platform de-
monstrator is configured with two STT training recipes:

• fake – a dummy recipe that does not do any training, used for debugging;
• base – performs STT model training using the Unified training recipe (see Section

2.3).

3.3. Model training
When a model training request is submitted, a model metadata object is created in the
database and the training job is added to the RabbitMQ queue of the specified recipe.
For example, if an STT training request with “base” recipe is submitted, it will be sched-
uled to the queue named “ASR.base”, and an SLU training request with recipe “ad-
vanced” will be scheduled to the queue “SLU.advanced”.

It is assumed that there is a Docker image for each recipe, which implements the training.
The KEDA autoscaler is configured to monitor specific queues and create Kubernetes
jobs with corresponding Docker images to process jobs in these queues. For instance, it
will try to create a Kubernetes job “asr-base-abcd” for each item in the monitored queue
“ASR.base”. If a training request is submitted to an unconfigured queue, nothing will be
executed.

Kubernetes jobs created by autoscaler are scheduled for execution on cluster nodes.
Depending on cluster configuration, new nodes can be dynamically added to the node
pool by cluster autoscaler. The initial platform demonstrator is configured to work with
fixed node pools.

When a job is successfully allocated to a given node, a pod or container is created from
the Docker image of the training recipe and the training process is started. All training
images are based on a “comprise-job-wrapper” image which provides the following basic
functionality:

● retrieve a training job from the queue;
● download training data and annotations from the cloud storage service;
● start the actual training;
● create data directories in Kaldi format if necessary;
● collect trained models and upload them to the cloud storage service;
● update model metadata.

Additionally, there is “comprise-kaldi-job-wrapper” to ease the development of Kaldi
training recipes.

When developing new training recipes based on a COMPRISE job wrapper image, De-
velopers should take note of the following assumptions:

• The speech data collected by Apps can be found in /data/speech.
• The text data collected by Apps can be found in /data/text.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

17

• The speech data shared from other Apps can be found in /data/add/speech.
• The text data shared from other Apps can be found in /data/add/text.
• There is a convenience script (/api-server/utils/data_prep.py) that parses

/data/speech and creates Kaldi data directories.
o /data/kaldi-data-transcribed – only utterances with transcriptions.
o /data/kaldi-data-untranscribed – only utterances without transcriptions.
o /data/kaldi-data-all – all utterances.

• The trained model should be packaged into a single file named /model.mdl.
• For future diagnostics, a training recipe can save logs to /logs.tgz which will be

uploaded to the cloud storage.

3.4. Web UI
A Web UI was implemented for the COMPRISE Cloud Platform using the Angular 9
framework and the Angular Material UI component library. The source code also contains
a Docker image definition, that creates a Docker container with a NodeJS server that
can run the Web UI in any environment (e.g., a Kubernetes cluster).

The UI uses the same API and provides simple access to all COMPRISE Cloud Platform
features, such as the registration of mobile Apps, collected data annotation, model train-
ing, etc. The Web UI also provides documentation for the COMPRISE Cloud Platform
API with easy-to-use try-out forms.

4. Deployment

4.1. Prerequisites
The initial platform demonstrator of the COMPRISE Cloud Platform depends on external
services that should be set up beforehand:

● an OpenID Connect or OAuth2 authentication service (e.g. Azure B2C);
● a cloud storage service (currently only support for Azure Blob storage is imple-

mented);
● a MongoDB database service;
● the RabbitMQ message broker;
● container registry for Docker containers;
● a Kubernetes cluster.

The configuration of these services is out of the scope of this document.

For a quick start, you can skip the installation process and just use the initial platform
demonstrator hosted at https://comprise-dev.tilde.com/. Currently, the approval of new
accounts is manual, so you will need to contact Tilde to get your account approved.

4.2. Configuration
The initial platform demonstrator is designed to run in a Kubernetes cluster rather than
a local computer. Since setting up a Kubernetes cluster is a non-trivial procedure specific
to a particular infrastructure and it is out of the scope of COMPRISE, we include only
example scripts and configuration files to install the COMPRISE Cloud Platform inside
an existing Kubernetes cluster. These examples can be found in the kubernetes/ di-
rectory of COMPRISE Cloud Platform and COMPRISE STT training recipe repositories.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

18

4.2.1. API service
In the example Kubernetes files, the API service is configured by kubernetes/over-
lays/example/config.yaml. This file contains credentials for Azure Blob storage, the
RabbitMQ queue, the Mongo database and other settings. It is possible to configure the
API service to use files for authorisation and authentication instead of Azure Active Di-
rectory. Please see the config.yaml.example file which describes all configuration pa-
rameters.

4.2.2. Web UI
The Web UI configuration is stored in web-ui/src/environments/environ-
ment.prod.ts.

The contents of environment.prod.ts are:

● production: {true or false}
● clientId: {OAuth2 client ID}
● redirectUri: {Web UI host URI}
● tenantId: {omit, not used}
● authority: {URL for OAuth2 login page}
● webApiUrl: {URL for API service host}

4.3. Building Docker images

4.3.1. Container registry
A registry is a repository for storing container images. After a Docker image is built, it
should be pushed into the registry so Kubernetes can download it from the registry
server. Set up a container registry service and configure it to be accessible by the Ku-
bernetes cluster. A detailed configuration of the container registry server is out of the
scope of this document.

The initial platform demonstrator consists of multiple Docker images. For each image we
provide a Makefile script that performs image building and also pushes to the repository.
By default, the script will try to push the image to comprisedev.azurecr.io. The Make-
files should be edited to replace this with your own container registry. Also make sure
that Docker has the necessary credentials to push images to the specified repository.

4.3.2. Building images and pushing to registry
You can build the API service and job-wrapper Docker images by running the following
commands:

git clone https://gitlab.inria.fr/comprise/comprise-cloud-based-plat-
form
cd comprise-cloud-based-platform
sudo make push

The Web UI Docker image is built similarly:

git clone https://gitlab.inria.fr/comprise/comprise-cloud-based-plat-
form
cd comprise-cloud-based-platform/web-ui
sudo make push

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

19

The same also applies to the Docker image for the Unified training recipe:

git clone https://gitlab.inria.fr/comprise/comprise-stt-training-rec-
ipe
cd comprise-stt-training-recipe
sudo make push

4.4. Deploying on Kubernetes
First, make sure you have Helm and kubectl installed and working, then run the following
commands:

cd kubernetes
./install_cert_manager.sh
./install_ingress.sh
./install_keda.sh

This will install:

● a certificate manager, so that the COMPRISE Cloud Platform can work behind
HTTPS endpoints;

● an ingress controller (nginx), that will provide routing to the COMPRISE Cloud
Platform services;

● KEDA and RabbitMQ, a Kubernetes-based event-driven autoscaler and a mes-
sage broker for training job queueing.

Directory kubernetes/base contains baseline configuration files that should be overrid-
den by files in one of the overlays in kubernetes/overlays.

In kubernetes/overlays/example you can find an example overlay configuration that
sets up an API service and a Web UI, a fake STT training job and enables https access
to the cluster.

Then the COMPRISE Cloud Platform can be deployed as follows:

kubectl apply -k kubernetes/overlays/example

The example configuration file kubernetes/train-job.yaml for running STT training
jobs in the Kubernetes cluster, can be found in COMPRISE STT training recipe reposi-
tory (https://gitlab.inria.fr/comprise/comprise-stt-training-recipe).

This configuration can be applied as follows:

kubectl apply -f kubernetes/train-job.yaml

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

20

5. How to use
In the following, we provide step-by-step guidelines on how Developers can start using
the COMPRISE Cloud Platform.

Consider a Developer of a voice-enabled mobile App that wishes to achieve the best
possible user experience but lacks expertise in STT or SLU model training. The Devel-
oper wants to overcome this obstacle using the COMPRISE solution.

5.1. Signing up
To sign up to the COMPRISE Cloud Platform, the Developer visits https://comprise-
dev.tilde.com and clicks on “Log In or Sign Up” (see Figure 2).

Figure 2: Login page of the Web UI.

A popup window (see Figure 3) is displayed where the Developer creates a new account
or logs in using an existing account details.

Figure 3: Login and sign up popup window.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

21

5.2. Acquiring API keys
Once an account is created, and logged into the Web UI of the COMPRISE Cloud Plat-
form, the Developer can create an API key for their mobile App. To do so, first the De-
veloper needs to register the mobile App in the COMPRISE Cloud Platform. This is done
by clicking on “Applications” and then “Add application” (see Figure 4).

Figure 4: Registering a new App.

To register an App, the fields “Name” and “Language” must be filled in and the API ac-
cess keys will be created automatically. Developers can override the automatic genera-
tion by manually filling the corresponding fields in the form.

After clicking on “Save”, the new App will be registered. The generated API keys can be
viewed by selecting the newly registered App in the list and then clicking “Edit applica-
tion” (see Figure 5).

Figure 5: Automatically generated API keys.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

22

5.3. Data collection
With the API access keys generated, the Developer embeds the generated API key into
their mobile App, which uses the COMPRISE Client Library for STT, SLU, and other
technologies.

The COMPRISE Client Library automatically uploads privacy-transformed speech and
text data to the Cloud Platform using the provided API key.

If the Developer does not want to use the COMPRISE SDK for their App, then they must
call the Cloud Platform API directly. All necessary information, as well as try-out forms,
can be found in the Web UI under “API documentation” (see Figure 6).

Figure 6: Interactive API documentation.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

23

5.4. Data annotation
Once the data collection has started, the Developer can use the Web UI and the COM-
PRISE Cloud Platform to curate the collected data. The list of collected audio samples
can be found by selecting a particular App from the list and clicking on the “Speech data”
tab (see Figure 7). From this tab, the Developer can listen to the collected audio samples,
add a transcription or delete samples that contain only noise.

Figure 7: Speech data tab.

In normal practice, data annotation is not performed by the Developer themself, but by
Data Annotators employed by the Developer’s company.

To provide access for the Data Annotators, the Developer grants access to the collected
speech and text data by sharing a specific URL with Data Annotators. This URL is dis-
played on the App details page (see Figure 8).

Figure 8: Shareable URL for Data Annotators.

When required, the URL can be invalidated by changing the AnnotatorKey of the App
(see Figure 9). It is not possible to create an empty AnnotatorKey, since leaving this field
empty will trigger an automatic key generation.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

24

Figure 9: Changing annotator key to invalidate shared URLs.

5.5. Sharing data between applications
To share the data collected by an App, the Developer must set a share key for the App.
Providing the share key together with the ID of the App will enable other Developers to
use the data collected by this App for training other models.

The share key can be set when registering a new App or by editing the existing App (see
Figure 10).

Figure 10: Setting the share key.

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

25

5.6. Model training
Once sufficient data has been collected and annotated, the Developer can schedule the
training of a new, improved model. To train a new STT model, the Developer must select
a particular App from the list, click on the “Models” tab and then on “ASR” and then on
“Train new model”.

In the model training tab (see Figure 11), the Developer can specify additional training
data from other Apps to be used for training of the model. This is done by entering the
ID and share key of the other App and clicking on “Add training data”.

For convenience, the Web UI provides a dropdown list of “Frequently used applications”,
which makes it easier to add pre-collected training data (see Section 2.4) to the model
training.

To initiate the training, the Developer enters the name of the training recipe (the initial
platform demonstrator uses name “base” for the Unified STT model training recipe) and
clicks on “Schedule training”. The new training job will be added to the queue.

Figure 11: Model training tab.

The progress of the model training can be monitored on the “Models” tab (see Figure
12). When the training is completed, the model can be downloaded directly by the mobile
App using the COMPRISE Client Library functions or by calling the COMPRISE Cloud

GA Nº: 825081 – COMPRISE – D5.4 Data collection and curation features of the platform

26

Platform API. It is also possible to download a trained model using the Web UI for manual
integration.

Figure 12: Detailed information on a trained model.

6. Conclusion
This deliverable presents the initial demonstrator of the COMPRISE Cloud Platform. The
COMPRISE Cloud Platform is designed as multiple services running in a Kubernetes
cluster. For authentication and storage, the Cloud Platform relies on external cloud ser-
vices.

The demonstrator provides data collection and curation features, model storage, STT
model training for six languages (English, French, German, Latvian, Lithuanian and Por-
tuguese) using a Unified training recipe and a Web UI. The demonstrator is deployed
online at https://comprise-dev.tilde.com.

The source code of the COMPRISE Cloud Platform is freely available on the COMPRISE
GitLab.11 The source code of the Unified training recipe is published in a separate repos-
itory on the COMPRISE GitLab12. Both repositories also contain deployment documen-
tation and example Kubernetes configuration files.

11 https://gitlab.inria.fr/comprise/comprise-cloud-based-platform
12 https://gitlab.inria.fr/comprise/comprise-stt-training-recipe

