

Cost effective, Multilingual, Privacy-driven voice-enabled Services

www.compriseh2020.eu

Call: H2020-ICT-2018-2020

Topic: ICT-29-2018

Type of action: RIA

Grant agreement Nº: 825081

WP Nº5: Cloud-based platform for

multilingual voice interaction

Deliverable Nº5.3: Data collection and curation

features of the platform

Lead partner: TILDE

Version Nº: 1.0

Date: 31/08/2020

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

2

Document information

Deliverable Nº and title: D5.3 - Data collection and curation features of the plat-
form

Version Nº: 1.0

Lead beneficiary: TILDE

Author(s): Askars Salimbajevs, Raivis Skadiņš (TILDE)

Reviewers: Irina Illina (INRIA), Álvaro Moretón (ROOT)

Submission date: 31/08/2020

Due date: 31/08/2020

Type1: OTHER

Dissemination level2: PU

Document history

Date Version Author(s) Comments

16/07/2020 0.1 Askars Salimbajevs,
Raivis Skadiņš

Initial draft version

28/07/2020 0.2 Askars Salimbajevs,
Raivis Skadiņš

Revised version following the re-
viewers’ comments

31/08/2020 1.0 Emmanuel Vincent,
Zaineb Chelly

Final version reviewed by the Coor-
dinator and the project manager

1 R: Report, DEC: Websites, patent filling, videos; DEM: Demonstrator, pilot, prototype; ORDP: Open Research

Data Pilot; ETHICS: Ethics requirement. OTHER: Software Tools
2 PU: Public; CO: Confidential, only for members of the consortium (including the Commission Services)

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

3

Document Summary

This deliverable describes the implementation of the first version of the COMPRISE Cloud

Platform. The document contains an overview of the implemented data collection and cura-

tion features, and a high-level description of the Cloud Platform architecture and imple-

mented application programming interface (API). Instructions on how to deploy and use the

Cloud Platform are provided as well.

The described version of the Cloud Platform allows users to upload, store and manage data

of two types: (1) speech and (2) text. For each uploaded audio or text segment, a label or

annotation can be added. The current version of the Cloud Platform also implements down-

loading of trained speech-to-text (STT) and spoken language understanding (SLU) models,

as well as scheduling training of new models. However, the specific training recipes or

scripts are still under development. In the future, support for other types of data and models

might be added.

The main users of the COMPRISE Cloud Platform will be Developers using the COMPRISE

SDK (WP4), which will exchange data and models via a REST API. This Cloud Platform will

fill a gap in the current ecosystem: existing resource repositories are good for speech re-

source description, dissemination, sharing, and distribution, but according to our knowledge

no platform would facilitate speech data creation, labelling, and curation.

The Cloud Platform also includes a web-based user interface (UI) which allows users to sign

up to the COMPRISE Cloud Platform, perform general operations and access the documen-

tation. An initial version of this Cloud Platform demonstrator has been set up: https://com-

prisedev.tilde.com.

https://comprisedev.tilde.com/
https://comprisedev.tilde.com/

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

4

Table of contents

1. Introduction 5

2. Data collection and curation features 5

2.1 Overview 5

2.2 Features for Developers 6

2.3 Features for Data Annotators 6

3. Cloud Platform architecture 6

3.1. Overview 6

3.2. API service 8

3.2.1. Authentication and authorisation 8

3.2.2. Data API 9

3.3. Web UI 13

4. Deployment 13

4.1. Prerequisites 13

4.2. Configuration 13

4.2.1. API service 13

4.2.2. Web UI 14

4.3. Building Docker images 14

4.3.1. Building the API service image and the job-wrapper image 14

4.3.2. Building the Web UI image 14

4.4. Deploying on Localhost 14

4.4.1. API service 14

4.4.2. Web UI 15

4.5. Deploying on Kubernetes 15

5. How to use 16

5.1. Signing up 16

5.2. Acquiring API keys 17

5.3. Data collection 18

5.4. Data annotation 19

5.5. Model training 20

6. Conclusion 21

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

5

1. Introduction

The COMPRISE Cloud Platform is developed within the scope of Work Package 5 (WP5)

“Cloud-based platform for multilingual voice interaction”. The objectives of this work package

are to:

● bring together the results of WP2, WP3 and WP4 to develop a cloud-based platform

to collect users’ neutralised speech and text data, and curate them.

● provide access to the user-independent speech-to-text (STT) and spoken language

understanding (SLU) models trained on these data as a service via a web service

application programming interface (API).

The current report is developed in the scope of Task T5.3. “Data collection and curation

features of the platform” and consists of the following sections. Section 2 informally defines

data collection and curation features of the COMPRISE Cloud Platform, and details the fea-

tures available to Developers and Data Annotators. Section 3 describes the updated archi-

tecture of the COMPRISE Cloud Platform and provides a high-level description of authenti-

cation, authorisation and data management API. Section 4 provides information on the con-

figuration and deployment of the Cloud Platform. Section 5 describes how the Cloud Plat-

form can be used from the Developer’s point of view. Finally, Section 6 is devoted to con-

clusions.

2. Data collection and curation features

2.1 Overview

Developers of voice-enabled applications (e.g., a personal assistant) have among their pri-

orities providing the best possible user experience. This can be potentially solved by using

domain-specific STT and/or SLU models for the particular usage domain of the application.

However, this requires the collection of user data and specific knowledge on how to train

STT and/or SLU models. The COMPRISE SDK and the COMPRISE Cloud Platform aim to

help Developers solve this problem.

Developers sign up to the Cloud Platform and acquire the API keys by registering their ap-

plication into the Cloud Platform. Next, Developers embed these API keys in the application

and the COMPRISE Client Library collects speech and text data from users of the applica-

tion.

The domain-specific neutral data collected for each application and each language is

grouped into separate corpora: speech data is appended to the application’s speech corpus,

and text data is appended to the application’s text corpus.

Developers use the COMPRISE Cloud Platform to manage the collected data, process the

collected data (e.g., apply machine translation) and train domain-specific user-independent

STT and/or SLU models.

As the collected data can be annotated, Developers shall be able to add annotations to the

collected corpora themselves or give access to the collected corpora to Data Annotators

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

6

employed by the Developer’s company. Data Annotators use the COMPRISE Cloud Plat-

form to label domain-specific neutral speech and text data. They are granted access to

speech or text corpora by Developers via a specific URL.

Each Data annotator can access multiple corpora simultaneously. For speech corpora, Data

Annotators provide a written transcription of each audio recording. For text corpora, Data

Annotators label each user prompt in terms of intent or next dialogue state. The labelled

data is then used for training domain-specific models.

2.2 Features for Developers

To summarise, the following features were developed in the Cloud Platform for Developers

using COMPRISE in their applications:

● new Developer account registration;

● authentication and authorisation;

● registration of new Apps and API key generation;

● changing or generating new API keys;

● upload and download of speech and text data;

● deleting speech and text data from the platform;

● adding or editing annotations for each uploaded audio or text;

● creating a specific URL that allows Data Annotators to add or edit data annotations;

● invalidating all previous Data Annotator URLs and generating new;

● an API for scheduling STT and SLU model training;

● an API for downloading trained models;

● a Web user interface (UI) that simplifies access to all these features.

2.3 Features for Data Annotators

Data Annotators do not have any accounts on the Cloud Platform. They access the Cloud

Platform by using special URLs provided by the Developers. Each such URL gives access

to data collected by each particular Application. The following data management features

have been implemented for Data Annotators:

● retrieving speech and text data collected by a particular App;

● adding or editing annotations for each uploaded audio or text;

● a Web UI that simplifies access to all these features.

3. Cloud Platform architecture

3.1. Overview

The COMPRISE Cloud Platform is designed to work in a cloud environment as a collection

of web services. As seen in Figure 1, the COMPRISE Cloud Platform consists of four main

services:

● An API service which provides the Cloud Platform with data collection and curation

functionality through an API.

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

7

● Training Docker containers which provide STT and SLU model training functionality.

For Machine Translation (MT) of the training data, an external machine translation

service will be used: Tilde MT.

● A Web UI which provides a simple UI for general Cloud Platform functionalities like

registering applications, corpus annotation, triggering model training, etc.

● A queue service based on RabbitMQ3 and KEDA4. This service manages the training

job queue and is responsible for starting training Docker containers when training is

requested.

These services are designed to run as Docker containers in a Kubernetes cluster. Multiple

replicas of the API, the training and Web UI services can be run simultaneously. RabbitMQ

can also be configured for redundancy and clustering. Such a solution enables Cloud Plat-

form operators to set up a highly available and scalable infrastructure.

There is a Docker image for each training recipe. All training images are based on a “Job

Wrapper” image which provides the following functionalities:

● downloading training data and annotations from the cloud storage service;

● starting a /job.sh script which is to be overridden with actual training;

● creating data directories in Kaldi format if necessary;

● collecting trained models and uploading them to the cloud storage service.

For future maintainability, the implementation does not reinvent everything from scratch.

Instead, it relies on open standards, mainstream technologies, existing cloud services and

components, such as Docker, Kubernetes, RabbitMQ and KEDA. The COMPRISE Cloud

Platform also relies on the following external services:

● An external authentication service, which authenticates users using the standard

OpenID Connect protocol. This enables us to use high-quality existing authentication

solutions and cloud providers. Currently, we use the Azure B2C service.

● An external storage service, which provides scalable and reliable object storage.

Currently, the Azure Blob storage is being used. However, the Cloud Platform is

designed so that it does not rely on specific Azure Blob features. The Azure interface

code is separated on its own submodule so that it can be easily replaced.

3 https://www.rabbitmq.com/
4 https://github.com/kedacore/keda

https://www.rabbitmq.com/
https://github.com/kedacore/keda

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

8

Figure 1: Cloud Platform architecture.

To efficiently balance the load between services and avoid unnecessary resource consump-

tion, COMPRISE Cloud Platform API clients upload/download data to/from the storage ser-

vice directly without the API service acting as an intermediary. This is achieved by using

special signed URLs that grant upload and download access for a particular amount of time.

This feature is not unique to the Azure Blob storage service. It can also be found in Amazon

S3 and other cloud storage services.

The source code of the Cloud Platform is available on the COMPRISE GitLab5 and is struc-

tured as follows:

● examples/fakejob - example of a Docker image based on a job wrapper;

● kubernetes - example Kubernetes configuration files;

● src - API service and training job wrapper source code;

● web-ui - Web UI source code.

3.2. API service

3.2.1. Authentication and authorisation

Authentication is implemented as described in Deliverable D5.2 “Platform hardware and

software architecture”.

The API service implements multiple levels of access for the API. These access levels are

implemented by having two types of authentication mechanisms:

5 https://gitlab.inria.fr/comprise/comprise-cloud-based-platform

https://gitlab.inria.fr/comprise/comprise-cloud-based-platform/-/blob/master/README.md

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

9

● OpenID Connect authentication for Developers and Administrators using an external

authentication service;

● API key authentication for mobile Apps and Data Annotators.

Depending on the authentication method, access to different API methods is provided (see

Section 3.2.2 for details).

The Cloud Platform owner can set up an OpenID Connect compatible authentication service

either himself/herself or by using external service providers. Developers and Administrators

must sign up through the Cloud Platform login page. Depending on the service provider and

configuration, an approval from the Cloud Platform owner might be required. The current

version of the Cloud Platform has been tested to work with the Azure B2C authentication

service.

After successful authentication via OpenID Connect, Developers and Administrators acquire

a JSON Web Token that is added to each API call and grants access to the Cloud Platform.

Administrators have access to all API methods for all resources on the Cloud Platform, while

Developers have access to all API methods only for resources (registered Apps, speech and

text) that they have created. Resources created by other accounts are not visible nor acces-

sible.

The current Cloud Platform version has two alternative authorisation implementations. The

first implementation uses a text file which stores the mapping between user IDs and roles

(Administrator, Developer, none). The Cloud Platform owner grants access to the Cloud

Platform by adding user IDs to this file. An alternative implementation uses the Azure Active

Directory service and maps Active Directory user groups for the Developer and Administra-

tor roles. The Cloud Platform owner grants access to the Cloud Platform by moving users

between groups.

Mobile Apps (created by Developers) and Data Annotators authenticate via API keys:

● mobile Apps use an AppKey to access limited Cloud Platform functionality;

● Data Annotators use an AnnotatorKey to label collected data.

The AppKey or the AnnotatorKey should be supplied to the API calls by appending query

“?api_key=<AppKey or AnnotatorKey>” to the API endpoint URL.

3.2.2. Data API

All data collection and curation features can be accessed via a REST API. This API is doc-

umented using the OpenAPI specification standard to simplify the adoption of the COM-

PRISE Cloud Platform by partners and future users.

The API documentation is dynamically generated by the API service from the source code

and available through a special URL, like: http://<host>/v1alpha/.well-known/service-desc.

In this section, we provide a high-level API description.

For API versioning each endpoint is prefixed with an API version, e.g. http://<host>/v1/<end-

point> or http://<host>/v2/<endpoint>.

https://comprise-dev.tilde.com/v1alpha/.well-known/service-desc

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

10

Application registration and management are provided by /v1alpha/applications endpoint

(see Table 1).

Table 1: Application management endpoint.

Method and URL Access Description

GET

/applications

Developer

Administrator

Retrieve the list of Apps to

which the user has access.

Returns: JSON, list of IDs and

names.

GET

/applications/<id>

Developer

Administrator

Mobile App (AppKey)

Get metadata for App <id>.

Returns: application JSON

(see below).

POST

/applications

Developer

Administrator

Create a new App and specify

its metadata.

Input: application JSON.

PUT

/applications/<id>

Developer

Administrator

Update metadata for App

<id>.

Input: application JSON.

DELETE

/applications/<id>

Developer

Administrator

Remove App <id>.

Each App is represented by a JSON object, which contains the following metadata:

{

 "name" : "string, name of the application",

 "description" : "string, optional description",

 "language" : "string, language of the application (ISO 639-1)",

 "app_key" : "string, API access key for mobile app",

 "annotator_key" : "string, access key for data annotators",

 "speech_upload_url" : "string, direct url for speech segment upload",

 "text_upload_url" : "string, direct url for speech segment upload",

 "owner_id" : "string, id of application owner, automatically assigned",

 "id" : "string, automatically generated id of application"

}

Speech and text data upload is performed via unique upload URLs from the JSON App.

These URLs are generated automatically when a JSON App is requested and provide direct

access for speech or text data upload to the storage service. They are valid for a single

upload only and should be updated before uploading the next data segment.

The uploaded speech and text segments can be managed via endpoints /v1alpha/applica-

tions/<id>/speech and /v1alpha/applications/<id>/text. As these endpoints are symmetrical,

here we describe only the former (see Table 2).

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

11

Table 2: Speech data management endpoint.

Method and URL Access Description

GET

/applications/<id>/speech

Developer

Administrator

Annotator (AnnotatorKey)

Retrieve list of speech seg-

ments in the speech corpus

of App <id>.

Returns: segment JSON

(see below).

GET

/applica-

tions/<id>/speech/<utt_id>

Developer

Administrator

Annotator (AnnotatorKey)

Download speech segment

<utt_id> or annotations

(specified by the query pa-

rameter).

Returns: segment JSON.

DELETE

/applications/<id>/speech

Developer

Administrator

Delete utterances from the

speech corpus of App <id>.

Optional input: array of

<utt_id> to delete. If no list is

specified, the whole corpus is

deleted.

DELETE /applica-

tions/<id>/speech/<utt_id>

Developer

Administrator

Delete speech segment

<utt_id>.

Each speech segment is represented by the following JSON:

{

 "annotation_url": "string, direct url to annotation file",

 "audio_url": "string, direct url to audio file",

 "id": "string, id of the speech segment (utt_id)"

}

Both URLs are generated automatically upon request and provide direct access to the stor-

age service so that the API service does not act as a proxy during audio downloads. The

generated URLs have an expiration time so that only authorised users can access the col-

lected data.

Annotations (transcriptions, SLU labels, etc.) can be added by calling PATCH /v1alpha/ap-

plications/<id>/speech/<utt_id> for speech segments or PATCH /v1alpha/applica-

tions/<id>/text/<utt_id> for text segments.

For speech segments, the request body is expected to be a JSON:

{

 "text": "string, speech segment transcription"

}

For text segments, the request body is expected to be a JSON as well:

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

12

{

 "text": "string, intent or other label"

}

The collected data can be used to train STT models via API requests to the /v1alpha/appli-

cations/<id>/models/ASR endpoint and SLU models via requests to the /v1alpha/applica-

tions/<id>/models/NLU endpoint. Currently, the API allows training of models only on data

collected by a particular App. In the future, additional API methods will be implemented to

enable data sharing between different Apps.

As STT and SLU training endpoints are symmetrical, here we only describe the former (see

Table 3).

Table 3: STT model training endpoint.

Method and URL Access Description

GET

/applications/<id>/mod-

els/ASR

Developer

Administrator

Mobile App (AppKey)

Retrieve list of STT models

for App <id>.

Returns: JSON containing

STT model metadata (see

below).

GET /applica-

tions/<id>/mod-

els/ASR/<m>

Developer

Administrator

Mobile App (AppKey)

Download STT model <m>.

Returns: binary model file.

POST /applica-

tions/<id>/models/ASR

Developer

Administrator

Train new STT model using

corpus “/applica-

tions/<id>/speech”.

Input: training recipe JSON

DELETE /applica-

tions/<id>/mod-

els/ASR</m>

Developer

Administrator

Delete STT model <m>.

Both STT and SLU model JSON contain the following metadata:

{

 "created": "date, model training request date",

 "id": "string, automatically assigned id of the model",

 "is_mt": “bool, is this model trained on MT data, automatically as-

signed”,

 "latest": “bool, automatically assigned if model is the latest for

the given app”,

 "recipe": "string, name of the training recipe used to train a

model",

 "status": "string, model status",

 "trained": "date, model training date"

}

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

13

To request model training, the following JSON should be posted to the STT or SLU endpoint:

{

 "recipe": "string, name of the training recipe"

}

Available recipe names are not predefined and depend on the particular configuration of the

Cloud Platform. The API service creates a training request in the job queue corresponding

to the given recipe. Then, if such a recipe handler is configured, KEDA will start a Kubernetes

job which will perform the training.

3.3. Web UI

A Web UI was implemented for the COMPRISE Cloud Platform using the Angular 9 frame-

work and the Angular Material UI component library. The source code also contains a

Docker image definition, that creates a Docker container with a NodeJS server that can run

the Web UI in any environment (e.g., a Kubernetes cluster).

The UI uses the same API and provides simple access to all Cloud Platform features, like

registration of mobile Apps, collected data annotation, model training etc. The Web UI also

provides documentation for the COMPRISE Cloud Platform API with easy-to-use try-out

forms.

4. Deployment

4.1. Prerequisites

The COMPRISE Cloud Platform depends on several external services that should be set up

beforehand:

● an OpenID Connect or OAuth2 authentication service (e.g. Azure B2C);

● a cloud storage service (currently only support for Azure Blob storage is imple-

mented);

● a MongoDB database service;

● the RabbitMQ message broker;

● a Kubernetes cluster (or at least Docker).

The configuration of these services is out of the scope of this document.

For a quick start, you can skip installation and just use the demo environment hosted at

https://comprise-dev.tilde.com/. Currently, the approval of new accounts is manual, so you

will need to contact us to get your account approved.

4.2. Configuration

4.2.1. API service

The API service uses a filed named config.yaml for reading and storing configuration.

Please see the config.yaml.example file which describes all configuration parameters.

https://comprise-dev.tilde.com/

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

14

4.2.2. Web UI

The Web UI configuration is stored in web-ui/src/environments/environment.prod.ts.

The contents of environment.prod.ts are:

● production: {true or false}

● clientId: {OAuth2 client ID}

● redirectUri: {Web UI host URI}

● tenantId: {omit, not used}

● authority: {URL for OAuth2 login page}

● webApiUrl: {URL for API service host}

4.3. Building Docker images

4.3.1. Building the API service image and the job-wrapper image

You can build the API service Docker image by running the following commands:

git clone https://gitlab.inria.fr/comprise/comprise-cloud-based-platform

cd comprise-cloud-based-platform

sudo make docker job_docker

4.3.2. Building the Web UI image

The Web UI Docker image is built similarly:

git clone https://gitlab.inria.fr/comprise/comprise-cloud-based-platform

cd comprise-cloud-based-platform/web-ui

sudo docker build -t comprisedev.azurecr.io/comprise-web:latest .

4.4. Deploying on Localhost

The COMPRISE Cloud Platform API service and the Web UI can be run on a local computer.

4.4.1. API service

To deploy the COMPRISE Cloud Platform API service on a local computer (localhost):

● Prepare the config.yaml configuration file in the current directory (use con-

fig.yaml.localhost as a template).

● Prepare user_roles.yaml (see user_roles.yaml.example).

● Run MongoDB from the Docker image as follows:

docker run -d -p 27017:27017 \

 -e MONGO_INITDB_ROOT_USERNAME=mongo \

 -e MONGO_INITDB_ROOT_PASSWORD=mongo \

 mongo

● Run RabbitMQ from the Docker image as follows:

docker run -d -p 5672:5672 \

 -e RABBITMQ_DEFAULT_USER=guest \

https://gitlab.inria.fr/comprise/comprise-cloud-based-platform
https://gitlab.inria.fr/comprise/comprise-cloud-based-platform

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

15

 -e RABBITMQ_DEFAULT_PASS=guest \

 rabbitmq:3

● Run the the API service container using config.yaml from the current working di-

rectory:

docker run \

 -v "$(pwd)":/etc/config \

 -p 5000:80 \

 comprisedev.azurecr.io/comprise-api-service:latest \

 --conf=/etc/config/config.yaml

● You can now use the API service running on localhost:5000

4.4.2. Web UI

To deploy the COMPRISE Cloud Platform Web UI on localhost:

● Configure the Web UI to use the API from localhost.

● Build the Docker image as described above.

● Run the Web UI Docker container:

docker run \

 -p 8080:80 \

 comprisedev.azurecr.io/comprise-web:latest

● Open http://localhost:8080/ in a browser to use the Web UI.

4.5. Deploying on Kubernetes

In practice, the Cloud Platform owner will often want to run it in a Kubernetes cluster rather

than a local computer. Since setting up a Kubernetes cluster is a non-trivial procedure spe-

cific to a particular infrastructure and it is out of the scope of COMPRISE, we include only

example scripts and configuration files to install the COMPRISE Cloud Platform inside an

existing Kubernetes cluster.

First, make sure you have helm and kubectl installed and working, then run the following

commands:

cd kubernetes

./install_cert_manager.sh

./install_ingress.sh

./install_keda.sh

This will install:

● a certificate manager, so that the Cloud Platform can work behind https endpoints;

● an ingress controller (nginx), that will provide routing to Cloud Platform services;

● KEDA and RabbitMQ, a Kubernetes-based event-driven autoscaler and a message

broker for training job queueing.

Directory kubernetes/base contains baseline configuration files that should be overridden

by files in one of the overlays in kubernetes/overlays.

http://localhost:8080/

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

16

In kubernetes/overlays/example you can find an example configuration that sets up an

API service and a Web UI, a fake STT training job and enables https access to the cluster.

To start this example configuration, one should first edit the settings in kubernetes/over-

lays/example/config.yaml and provide credentials to Azure Blob storage and services.

It is also possible to configure the service to use a file instead of Azure AD.

Then the COMPRISE Cloud Platform can be deployed as follows:

kubectl apply -k kubernetes/overlays/example

5. How to use
In the following, we provide step-by-step guidelines on how Developers can start using the

COMPRISE Cloud Platform.

Consider the Developer of a voice-enabled mobile application that wishes to achieve the

best possible user experience but lacks expertise in STT or SLU model training. The Devel-

oper wants to overcome this obstacle using COMPRISE.

5.1. Signing up

The Developer goes to https://comprisedev.tilde.com and clicks on “Log In or Sign Up” (see

Figure 2).

Figure 2: Login page of the Web UI.

A popup window (see Figure 3) is displayed where the Developer can create a new account

or login into an existing one.

https://comprisedev.tilde.com/

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

17

Figure 3: Login and sign up popup window.

5.2. Acquiring API keys

After creating an account and logging into the Web UI of the Cloud Platform, the Developer

can get API keys for his/her mobile App. Firstly, the Developer needs to register the mobile

App on the Cloud Platform. This can be done by clicking on “Applications” and then on “Add

application” (see Figure 4).

Figure 4: Registering a new App.

To register an App, the fields “name” and “language” must be filled. API access keys will be

created automatically. Developers can override automatic generation by manually filling the

corresponding fields in the form.

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

18

After clicking on “Save”, a new App will be registered. The generated API keys can be

viewed by selecting the newly registered App in the list and then by clicking “Edit application”

(see Figure 5).

Figure 5: Automatically generated API keys.

5.3. Data collection

Next, the Developer embeds the generated API key into his/her mobile App, which uses the

COMPRISE Client Library for STT, SLU and other technologies.

The COMPRISE Client Library automatically uploads privacy-transformed speech and text

data to the Cloud Platform using the provided API key.

If the Developer does not want to use the COMPRISE SDK for his/her App, then he must

call the Cloud Platform API directly. All necessary information, as well as try-out forms, can

be found in the Web UI under “API documentation” (see Figure 6).

Figure 6: Interactive API documentation.

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

19

5.4. Data annotation

After data collection has started, the Developer can use the Web UI and the Cloud Platform

to curate the data collected. The list of collected audio samples can be found by selecting a

particular App from the list and clicking on the “Speech data” tab (see Figure 7). On this tab

the Developer can listen to the collected audio samples, add a transcription and delete sam-

ples that contain only noise.

Figure 7: Speech data tab.

Usually, data annotation is not performed by the Developer himself/herself, but by Data An-

notators employed by the Developer’s company.

The Developer grants access to the collected speech and text data by sharing a special URL

with Data Annotators. This URL is displayed on the App details page (see Figure 8).

Figure 8: Shareable URL for Data Annotators.

If needed, this URL can be invalidated by changing the AnnotatorKey of the application (see

Figure 9). Trying to set an empty AnnotatorKey will trigger automatic key generation.

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

20

Figure 9: Changing annotator key to invalidate shared URLs

5.5. Model training

After enough data have been collected and annotated, the Developer can schedule the

training of a new, improved model. For example, for training a new STT model, the Devel-

oper must select a particular App from the list, click on the “Models” tab and then on “ASR”

and “Train new model”.

After choosing the training recipe, the Developer clicks on “Schedule training” and a training

job is added to the queue (see Figure 10).

Figure 10: Model training tab.

Model training progress can be monitored on the “Models” tab (see Figure 11). When train-

ing is completed, the model can be downloaded directly by the mobile App using COMPRISE

Client Library functions or directly by calling the Cloud Platform API. It is also possible to

download a trained model using the Web UI for manual integration.

GA Nº: 825081 – COMPRISE – D5.3 Data collection and curation features of the platform

21

Figure 11: Detailed information on a trained model.

6. Conclusion

This deliverable presents the first version of the COMPRISE Cloud Platform. The Cloud

Platform is designed as multiple services running in a Kubernetes cluster. For authentication

and storage, the Cloud Platform relies on external services.

This first version provides data collection and curation features, model storage, model train-

ing scheduling and a web UI, and it is deployed online: https://comprisedev.tilde.com.

The source code of the COMPRISE Cloud Platform is freely available on the COMPRISE

GitLab6. The repository also contains deployment documentation and example Kubernetes

configuration files.

In the next steps, we plan to extend the Cloud Platform API with the ability to share data

between mobile apps from different Developers and populate the Cloud Platform with real

speech and text data, as well as implement real STT and SLU model training recipes.

6 https://gitlab.inria.fr/comprise/comprise-cloud-based-platform

https://comprisedev.tilde.com/
https://gitlab.inria.fr/comprise/comprise-cloud-based-platform/-/blob/master/README.md

