

Cost effective, Multilingual, Privacy-driven voice-enabled Services

www.compriseh2020.eu

Call: H2020-ICT-2018-2020

Topic: ICT-29-2018

Type of action: RIA

Grant agreement Nº: 825081

WP Nº4: Cost-effective multilingual

voice interaction

Deliverable Nº4.3: Initial COMPRISE SDK

prototype

Lead partner: ASCO

Version Nº: 1.0

Date: 31/08/2020

http://www.compriseh2020.eu/

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

2

Document information

Deliverable Nº and title: D4.3 – Initial COMPRISE SDK prototype

Version Nº: 1.0

Lead beneficiary: ASCO

Author(s): Gerrit Klasen (ASCO)

Reviewers: Denis Jouvet (INRIA), Youssef Ridene (NETF)

Submission date: 31/08/2020

Due date: 31/08/2020

Type1: DEM

Dissemination level2: PU

Document history

Date Version Author(s) Comments

10/07/2020 0.1 Gerrit Klasen First draft of the deliverable

20/07/2020 0.2 Gerrit Klasen Revised version following the reviewer
comments

17/08/2020 0.3 Gerrit Klasen Revised version following the project
manager comments

31/08/2020 1.0 Emmanuel Vincent,
Zaineb Chelly

Final version reviewed by the coordi-
nator and the project manager

1 R: Report, DEC: Websites, patent filling, videos; DEM: Demonstrator, pilot, prototype; ORDP: Open Research

Data Pilot; ETHICS: Ethics requirement. OTHER: Software Tools
2 PU: Public; CO: Confidential, only for members of the consortium (including the Commission Services)

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

3

Document summary

This deliverable (D4.3) is the third deliverable of WP4 which is about cost-effective multilingual

voice interaction. It describes the initial version of the COMPRISE software development kit

(SDK) prototype, which is aligned to the goals of Task T4.2.

The COMPRISE SDK integrates and interfaces multiple algorithms, application programming

interfaces (APIs) and tools developed within COMPRISE. It facilitates the development of mul-

tilingual, voice-enabled applications by providing developers with a language abstraction for

voice interaction and with interfaces to easily access the desired functionalities. Besides, the

SDK allows developers to compile the output across multiple platforms and to create execut-

able applications both for Android and iOS.

This document explains the current technical status of the SDK. We also discuss the neces-

sary adjustments compared to Deliverable D4.1, where the initial architecture was defined.

These include the introduction of an additional component, the COMPRISE Personal Server,

as well as the corresponding changes in the architecture. A slight modification in the terminol-

ogy is introduced to ensure the focus of the COMPRISE SDK.

The COMPRISE SDK consists of three components: the COMPRISE Personal Server, the

COMPRISE App Wizard, and the COMPRISE Client Library. Instructions are given for appli-

cation developers on how to install and use them and which degree of functionality they can

include in their own applications.

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

4

Table of contents

1. Introduction 5

1.1 COMPRISE SDK as initially defined 5

1.2 COMPRISE SDK adjustments 5

1.3 Contents 6

2. COMPRISE SDK prototype 6

2.1 COMPRISE Personal Server 6

2.2 COMPRISE App Wizard 10

2.3 COMPRISE Client Library 13

2.3.1 Operating Branch 14

2.3.2 Training Branch 22

2.3.3 Cloud Platform API 25

3. Conclusion 26

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

5

1. Introduction

1.1 COMPRISE SDK as initially defined

Deliverable D4.1 “SDK Software Architecture” (submitted to the European Commission on

29/11/2019) defined the purpose of the SDK, its initial architecture, and an implementation

plan. We briefly summarise these items below. For more details and terminology, reading

Deliverable D4.1 prior to the current document is strongly recommended.

The COMPRISE SDK was initially planned to consist of two components:

 the COMPRISE SDK Developer UI, a user interface which helps developers attach

and configure all COMPRISE functionalities in their App;

 the COMPRISE SDK Client Library, which implements all the voice interaction func-

tionalities. The library provides a set of methods and functionalities to be accessed by

developers within their preferred integrated development environment (IDE) during the

development phase. After implementation, all of the value of this library shall run on

client devices during runtime.

Deliverable D4.1 explained why the COMPRISE SDK is needed in addition to other toolkits

for the development of voice-enabled applications currently available on the market. Specifi-

cally, the COMPRISE SDK provides additional benefits in terms of privacy, cost-effectiveness,

and inclusiveness.

Deliverable D4.1 also gave an overview of the architecture of the SDK in terms of the archi-

tecture of all subcomponents, the workflow between the subcomponents, and how it fits into

the whole COMPRISE software architecture and environment. The SDK is used by developers

to design and deploy Apps, and it interfaces with the COMPRISE Cloud Platform to train do-

main-specific models. Further insights were given about the usage of the COMPRISE Cloud

Platform API and the COMPRISE Client Library components running within the App. The de-

liverable differentiates the components which belong to the speech and language processing

toolchain (Operating Branch) from those which aim to collect large-scale in-domain speech

and language data for multiple languages (Training Branch).

The implementation plan provided a timeline for the integration and the documentation of the

results of WP2, WP3, T4.1 and WP5, with the goal of releasing an initial prototype at M21 and

a final one at M30. After the submission of Deliverable D4.1, we followed this implementation

plan in order to translate all the concepts mentioned in the plan into a concrete technical im-

plementation.

1.2 COMPRISE SDK adjustments

The first version of the COMPRISE SDK released together with this document involves two

adjustments compared to Deliverable D4.1, which turned out to be necessary in the course of

development.

Personal Server

Feedback from various stakeholders about the initial COMPRISE SDK architecture has raised

the need for a third SDK component: the COMPRISE Personal Server. Section 2.1 will ex-

plain the need for this component in more detail.

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

6

Change of Terminology

Feedback has also shown that the COMPRISE SDK Developer UI was often misunderstood

as an IDE, which could be used to develop Apps without relying on any additional IDEs and/or

frameworks. To avoid this misunderstanding, we renamed the COMPRISE SDK Developer UI

into COMPRISE App Wizard. This new name underlines the purpose of the tool: rather than

a classical Developer UI which is used to write source code, the COMPRISE App Wizard helps

developers attach COMPRISE Client Library functionality to their App and configure it.

Furthermore, we identified the need to clarify the usage of the term “SDK”. Classically, an SDK

is a collection of helpful methods, functionalities, libraries and tools, which together ease de-

velopers’ work. The names of the underlying libraries typically do not include “SDK”. Based

on this fact, we also renamed the COMPRISE SDK Client Library into COMPRISE Client

Library.

To sum up, the COMPRISE SDK is an SDK in the classical sense, that is a collection of three

components: the COMPRISE App Wizard that helps setup a future App with COMPRISE func-

tionality, the COMPRISE Client Library that implements the functionality itself, and the COM-

PRISE Personal Server.

1.3 Contents

The rest of this document in structured as follows. Section 2.1 justifies the need for the COM-

PRISE Personal Server and explains how users can install it. Section 2.2 introduces the COM-

PRISE App Wizard and describes the workflow for application developers. Section 2.3 details

the functionalities currently implemented in the COMPRISE Client Library. These methods are

documented for developers to use within the IDE of their choice. Section 3 summarises future

steps towards the final version of the COMPRISE SDK due at M30.

2. COMPRISE SDK prototype

As stated above, the COMPRISE SDK now consists of three components, namely:

1) the COMPRISE Personal Server

2) the COMPRISE App Wizard

3) the COMPRISE Client Library

To attach COMPRISE functionality to individual projects, developers shall use these compo-

nents in the above order.

2.1 COMPRISE Personal Server

The COMPRISE Personal Server answers two concerns which arose during the development

of the COMPRISE Client Library. First, some Client Library components currently rely on Py-

thon code. The integration of these components on mobile devices relying on Java, Swift, or

Angular requires porting this code into a supported language and/or compiling it using Web

Assembly. The amount of work needed is large and hard to estimate precisely. Second, as

mentioned in Deliverable D4.1, some components need high computational power and/or stor-

age capacity, which cannot be achieved by older or low-end mobile devices.

It was therefore decided to offer users and developers the possibility to run these (and possibly

all) Client Library components on a Personal Server, which facilitates their integration and

provides greater computational power and storage capacity. Once installed on a user’s per-

sonal computer at home, the Personal Server communicates with his/her Android/iOS front-

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

7

end device via a secure (SSL) channel. The user device sends the input data for a given

component to the Personal Server, processing takes place on the Personal Server, and the

output is sent back to the user device. Thanks to SSL, this solution protects privacy almost3

as well as if the components were running on the user device itself. Also, the Personal Server

is expected to offer similar user experience in terms of latency and usability as a public cloud.

For instance, it can handle large vocabulary applications and the user may communicate with

it from virtually anywhere (e.g., while in public transport).

The Personal Server is based on the Docker4 framework, which helps to build containerised

services and applications. The use of Docker makes it possible to serve all of the functionali-

ties needed, package them within a container, and ship it multiple times within images. This

allows a large number of users to use the same type of server for their individual needs.

The overall COMPRISE architecture including the COMPRISE Personal Server is depicted in

Figure 1.

Figure 1: New COMPRISE architecture with Personal Server.

Once all Client Library components have been integrated on the Personal Server, we will use

the remaining time (if any) to integrate as many components as possible in Android/iOS, so

as to offer developers the alternative possibility to run them on the user device.

In the following, we provide instructions for a developer to install a local instance of the Per-

sonal Server on his/her desktop for the purpose of testing the App being developed. In the

3 The risk that an attacker manages to break encryption and listen to the data sent from the user’s
device to the Personal Server (a so-called man-in-the-middle attack) is very low and this requires huge
effort. The risk that an attacker manages to access user data stored in a public cloud is much higher.
4 https://www.docker.com/

https://www.docker.com/

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

8

future, any user shall also be able to easily install an instance of the Personal Server on his/her

personal computer in order to run the functionalities behind multiple Apps. The installation

steps for users are out of the scope of this deliverable, and will be detailed in Deliverable D4.5

which is planned for M30.

Step 1 – Install Docker Engine on your desktop

To run the Personal Server, you first need to install Docker Engine on your desktop. To do so,

follow the instructions for MacOS5 or Windows6 to download and install a Docker Desktop

environment or the instructions for Linux7 to download and install a Docker Server.

The instructions below describe the subsequent steps for Docker Desktop. Similar steps can

be followed for Docker Server.

During installation, you will be asked whether you want to enable HyperV-Features. Agree on

that (see Windows example below).

Step 2 – Start Docker Engine

Start Docker Engine. Sign-in is potentially needed. You may use "comprise-dev@web.de"

and "comprise_h2020" as credentials.

If you get the Alert below, access the BIOS to activate HyperV-Features. On Windows, if the

problem persists, it is often helpful to search for "Activate / Deactivate Windows Features" and

turn "HyperV" off and on again, both after a re-start of the system.

Step 3 – Install the COMPRISE Personal Server

Once Docker Engine is running, open a shell/console (with admin rights, if needed) and type:

docker pull compriseh2020/personalized_server

5 https://docs.docker.com/docker-for-mac/install/
6 https://docs.docker.com/docker-for-windows/install/
7 https://docs.docker.com/engine/install/

mailto:comprise-dev@web.de
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/engine/install/

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

9

This will cause Docker to download a container with the COMPRISE Personal Server on your

desktop. The Docker container is hosted at DockerHub8 and will soon be pushed to the COM-

PRISE GitLab. You will see multiple layers of the Docker image being downloaded and ex-

tracted in parallel.

Repeat this regularly to check on updates. After all layers have been downloaded, start run-

ning the container:

docker run -dp 8443:8443 -dp 4040:4040 compriseh2020/personal-

ized_server

To check whether everything went well, on MacOS or Windows, open Docker Desktop (e.g.,

via the notification bar) and select "Dashboard".

You will see your Personal Server running.

8 https://hub.docker.com/repository/docker/compriseh2020/personalized_server

https://hub.docker.com/repository/docker/compriseh2020/personalized_server

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

10

Step 4 – Connect the COMPRISE Personal Server with the application9

Open your web browser and visit http://localhost:4040/status. The resulting webpage includes

a unique, secure URL (highlighted in yellow below) which forwards all incoming traffic to the

local server instance. This URL is needed because, by default, neither the localhost URL nor

the URL of the local network are accessible to mobile phones from the outside. This is why a

kind of proxy is needed to forward incoming traffic from the mobile phone to the server.

Copy this URL and continue with the instructions for the COMPRISE App Wizard.

2.2 COMPRISE App Wizard

The COMPRISE App Wizard is a helper tool which allows software developers to equip their

solutions with COMPRISE functionalities and to enable their software to have voice-enabled,

multilingual, privacy-aware behaviour.

The App Wizard currently runs with Angular v9.1.4, Electron v8.2.5, and Electron Builder

v22.6.0. To install it, first install the latest LTS versions of NodeJS10 and Git11, following docu-

mentation at the corresponding URLs. Clone the App Wizard repository locally:

git clone https://gitlab.inria.fr/comprise/comprise_app_wizard.git

and install its dependencies on npm (an online repository for open-source NodeJS projects)

and @angular/cli in the npm global context:

npm install -g @angular/cli && npm install

9 This step relies on https://ngrok.com/ as a solution to forward incoming traffic from the mobile phone
to the local server instance. The instructions are specific to this solution. An alternative solution such
as https://github.com/localtunnel will be offered in the final version of the Personal Server.
10 https://nodejs.org/en/download/
11 https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

http://localhost:4040/status
https://ngrok.com/
https://github.com/localtunnel
https://nodejs.org/en/download/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

11

Afterwards, the App Wizard can be executed with:

npm start

Once the COMPRISE App Wizard has been started, you will see the screen below, starting

with the Overview (a) frame. If you accidentally closed the documentation, Documentation

(b) will get it back. Sometimes, in case of installation processes or errors, the Console (c) can

be checked for more information.

The following steps numbered 1 to 7 each correspond to a specific frame or area on the screen

above.

Step 1 – COMPRISE project initialisation

The first step is to choose an existing project which needs to be enriched with COMPRISE

functionality. Currently, for mobile applications, we support Angular projects within Ionic appli-

cations.

Click on "Load COMPRISE project". A file chooser will open and let you choose the project to

which you want to attach the COMPRISE Client Library. Each Angular project has a pack-

age.json file. Enter the folder of the chosen project (here, we choose comprise_sample_app

as an example) and select that file.

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

12

Step 2 – COMPRISE Client Library and Personal Server configuration

Still on the Overview frame, fill the Personal Server URL field with the URL generated in Sec-

tion 2.2. It will be assigned to the package.json file of your project and be used by the Client

Library to communicate with the Personal Server.

The COMPRISE Client Library consists of multiple subcomponents listed in Section 2.3 below

(Operating Branch, Training Branch, Cloud Platform API). In this step, you can also choose

which subcomponents of the COMPRISE Operating Branch shall be part of your mobile ap-

plication. By default, every subcomponent is enabled. Subcomponents of the COMPRISE

Training Branch and communication with the Cloud Platform API are expected to be always

required.

In the final version of the COMPRISE App Wizard, dropdown menus will be added to let you

select the desired Speech-to-Text models to be downloaded from the COMPRISE Cloud Plat-

form. In the current version, a single pretrained Speech-to-Text model is assumed to be used

for every available language.

Step 3 – Cloud Platform

When loading your project in Step 1, an associated identifier and storage area was automati-

cally created within the COMPRISE Cloud Platform. The Cloud Platform is meant for upload-

ing, storing and managing speech or text data and labels, training large-scale user independ-

ent models on these data, and making them available to COMPRISE Apps. Its functionalities

include secure cloud-based data and model storage, scalable and dynamic cloud-based high-

performance computing, APIs for continuous data upload and occasional model download,

and general platform features (user interface, authentication, usage analytics, etc.) and pro-

cedures for data labelling and curation. For more information about the Cloud Platform UI, see

Deliverable D5.312 “Data collection and curation features of the platform” (submitted to the

European Commission on 31/08/2020).

Step 4 – Spoken Language Understanding

In this step, you can provide example sentences and corresponding intents and train the initial

model for Spoken Language Understanding. Following that, you can also see how your input

is interpreted by the Spoken Language Understanding subcomponent and which intent is iden-

tified. Find all documentation needed within the Tilde.AI training PDF13 or video14.

Step 5 – Dialogue Management

After this, you need to define how the system will react to each detected intent. The way to

proceed is also documented in the Tilde.AI training PDF and video.

Step 6 – Spoken Language Generation

Based on the result of the Dialogue Management, you will need to tell the system which an-

swer shall be generated. The way to proceed is also documented in the Tilde.AI training PDF

and video.

12 https://www.compriseh2020.eu/files/2020/08/D5.3.pdf
13 https://gitlab.inria.fr/comprise/comprise_app_wizard/-/blob/master/doc/Tilde.AI%20Training.pdf
14 https://www.youtube.com/watch?v=fVciLmr1VDI&feature=youtu.be

https://www.compriseh2020.eu/files/2020/08/D5.3.pdf
https://gitlab.inria.fr/comprise/comprise_app_wizard/-/blob/master/doc/Tilde.AI%20Training.pdf
https://www.youtube.com/watch?v=fVciLmr1VDI&feature=youtu.be

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

13

Step 7 – Attach/update the COMPRISE Client Library

By clicking Install COMPRISE Client Library to Device, all of the components you chose in

Step 2 will be part of the COMPRISE Client Library and installed as part of the dependencies

of your application. In your console, you will see the ongoing progress of installation of the

COMPRISE Client Library components and a test build, to ensure everything went well.

It should look like below. You also can use the App Wizard for updating packages already

present. Then, the output might be a little bigger.

The project you chose in Step 1 now includes all of the COMPRISE functionalities you wanted

to attach.

Step 8 – Start with the COMPRISE Client Library!

After the setup, you can open the project in your preferred IDE, look at the COMPRISE Client

Library functionalities to be used within the app, and start using them.

2.3 COMPRISE Client Library

The resulting app will be running with the help of the COMPRISE Client Library. This library

integrates state-of-the-art voice technologies and new functionalities developed within WP2,

WP3 and T4.1 of COMPRISE. These technologies are implemented via the following subcom-

ponents:

 Operating Branch:
o Speech-To-Text (including Acoustic Model Personalisation)

o Machine Translation

o Spoken Language Understanding

o Dialogue Management / Spoken Language Generation

o Text-To-Speech

 Training Branch:

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

14

o Privacy-Driven Speech Transformation (based on the COMPRISE Speech and

Text Transformers)

o Privacy-Driven Text Transformation (based on the COMPRISE Text Transformer)

o Speech-To-Text Language Model Personalisation

o Spoken Language Understanding Model Personalisation

 COMPRISE Cloud Platform API.

The following subsections list the methods available in the current version of the SDK, i.e., for

all subcomponents except Speech-To-Text Language Model Personalisation and Spoken

Language Understanding Model Personalisation which are due at M27. For each method, we

provide a short description, list the corresponding parameters and callbacks, and provide an

example.

These functionalities have also been integrated as an additional example in a COMPRISE

Sample App15 within a one-pager example16. This will act as a reference on how developers

can integrate all the source code in a proper way.

2.3.1 Operating Branch

Component Name Speech-To-Text

Component Description Transforms user's vocal input into native textual represen-

tation.

Method Name startRecording

Method Description Currently uses RecordRTC17 to start recording the user’s

voice as 16 kHz, audio/wav, mono.

Parameters None

Callback Success boolean

Success of started operation.

Example
import { startRecording } from 'com-

prise_speech_to_text'

import { HTTP } from '@ionic-native/http/ngx';

...

constructor(public http: HTTP) {

 ...

 startRecording().then(() => {

 console.log("Start talking");

 },(onerror) => {

 console.log("Following error

happened :"+onerror);

15 https://gitlab.inria.fr/comprise/comprise_sample_app
16 https://gitlab.inria.fr/comprise/comprise_sample_app/-/blob/master/src/app/home/home.page.ts
17 https://www.npmjs.com/package/recordrtc

https://gitlab.inria.fr/comprise/comprise_sample_app
https://gitlab.inria.fr/comprise/comprise_sample_app/-/blob/master/src/app/home/home.page.ts
https://www.npmjs.com/package/recordrtc

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

15

 });

}

Component Name Speech-To-Text

Component Description See above

Method Name stopRecording

Method Description Terminates the recording, sends the recorded audio file to

the Personal Server to be processed, and gets the result-

ing textual answer.

Currently uses the language parameter to pick the model

to be used by the Personal Server, which includes i-vector

based personalisation. Access to multiple models per lan-

guage and app-specific models will be enabled via the App

Wizard. X-vector based personalisation and simultaneous

recording and transcription will also be provided in the final

version.

Parameters

Language String

The language key, format "de", "en",

http Any

The native Plugin from Android or iOS18

Callback Text String

Textual representation of the voice input.

Example
import { stopRecording } from 'com-

prise_speech_to_text'

import { HTTP } from '@ionic-native/http/ngx';

...

constructor(public http: HTTP) {

 ...

 stopRecording(this.privateStor-

age.langShort, http).then((text) => {

 console.log("Start talking to

me until I stop");

 },(onerror) => {

 console.log("Following error

happened: "+onerror);

18 https://github.com/silkimen/cordova-plugin-advanced-http — This plugin is required for HTTP(S)

functionality. Ionic also provides HTTP(S) functionality, but the system treats it as if the source of any
call is “localhost” instead of the actual IP of the device. Using the native plugin, calls work as expected.

https://github.com/silkimen/cordova-plugin-advanced-http

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

16

 });

}

Component Name Machine Translation

Component Description
Translates textual input in the user’s native language into

a pivot language and backwards. Currently uses LetsMT19

for LV-EN, EN-LV, and EN-DE translation. Other language

pairs are (temporarily) handled by Yandex20. Using the

same language as both native and pivot language will

simply return the text without changes.

Method Name Translate

Method Description Translates one language into another

Parameters

Sentence String

The text to be translated

from string

The language key of the current language, format "de",

"en", ...

to string

The language key of the language to translate to, format

"de", "en", ...

letsMTID string

The client ID of LetsMT, in case it can be used.

yandexID string

The client ID of Yandex, in case it can be used.

http any

The native Plugin from Android or iOS

Callback Translation string

Translated Text.

Example
import { translate } from 'comprise_ma-

chine_translation'

import { HTTP } from '@ionic-native/http/ngx';

19 https://www.letsmt.eu/
20 https://www.yandex.com/

https://www.letsmt.eu/
https://www.yandex.com/

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

17

...

constructor(public http: HTTP) {

 ...

 translate("Hey, translate me please",

"en", "de", "XXXXXXXXX", "XXXXXXXXX",

http).then((translation) => {

 console.log("My translation is:

"+translation);

 },(onerror) => {

 console.log("Following error

happened: "+onerror);

 });

}

Component Name Spoken Language Understanding

Component Description
Interprets the intent of the user in textual input.

Currently uses the Tilde.AI21 API for determining possible

intents. For training the corresponding model, use the

COMPRISE App Wizard.

Directly accessed without Personal Server, as Tilde.AI is

running directly at partner Tilde. Planned to be moved to

the Personal Server soon.

Method Name detectIntent

Method Description Interprets the intent of the user.

Parameters Text String

The text to be interpreted for the intent

appID String

ID/Name of the application.

langID String

The language key of the language to translate to, format

"de-de", "en-en",

apiKey string

The API Key to access Tilde.AI.

21 https://botdashboard.tilde.ai/Intents

https://botdashboard.tilde.ai/Intents

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

18

http any

The native Plugin from Android or iOS

Callback Intent string

The detected intent.

Example
import { detectIntent } from 'comprise_natu-

ral_language_understanding'

import { HTTP } from '@ionic-native/http/ngx';

...

constructor(public http: HTTP) {

 ...

 detectIntent(text, "myCOMPRISEApp",

"en-en", "XXXXXXXXX", http).then((intent) => {

 console.log("Detected intent

is: "+intent)

 },(onerror) => {

 console.log("Following error

happened: "+onerror);

 });

}

Component Name Dialogue Management / Spoken Language Generation

Component Description
Based on the detected user intent, Dialogue Management

decides which route to go within the current communica-

tion scenario and Spoken Language Generation creates a

suitable textual answer. This module combines both com-

ponents.

Currently uses the Tilde.AI API for both Dialogue Manage-

ment22 and Spoken Language Generation23. For training

of dialogue scenarios and related answers use the COM-

PRISE App Wizard.

Directly accessed without Personal Server, as Tilde.AI is

running directly at partner Tilde. Planned to be moved to

the Personal Server soon.

Method Name openConversation

Method Description Opens a new conversation between the user and a chat-

bot, including a fresh communication scenario.

22 https://botdashboard.tilde.ai/Model
23 https://botdashboard.tilde.ai/Lang

https://botdashboard.tilde.ai/Model
https://botdashboard.tilde.ai/Lang

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

19

Parameters conversationID string

The ID of the conversation.

apiKey string

The API Key to access Tilde.AI.

http any

The native Plugin from Android or iOS

Callback conversation object

A "conversation" object with attributes below

conversation.token string

Token of chosen communication.

conversation.conversationId string

ID of chosen communication.

Example
import { openConversation } from 'com-

prise_natural_language_generation'

import { HTTP } from '@ionic-native/http/ngx';

...

constructor(public http: HTTP) {

 ...

 openConversation("XXXXXXXXXXX",

http).then((conversation) => {

 console.log("Conversation ob-

ject is: " + conversation);

 console.log("Conversation token

is: " + conversation.token + " and the ID: " +

conversation.conversationId);

 },(onerror) => {

 console.log("Following error

happened: "+onerror);

 });

}

Component Name Dialogue Management / Spoken Language Generation

Component Description See above

Method Name retrieveConversation

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

20

Method Description Retrieves a conversation already started in the past be-

tween the user and a chatbot, including the current com-

munication scenario at that time.

Parameters conversationID string

The ID of the conversation to be retrieved.

apiKey string

The API Key to access Tilde.AI.

http any

The native Plugin from Android or iOS

Callback Conversation object

A "conversation" object with attributes below

conversation.token string

Token of chosen communication.

conversation.conversationId string

ID of chosen communication.

Example
import { retrieveConversation } from 'com-

prise_natural_language_generation'

import { HTTP } from '@ionic-native/http/ngx';

...

constructor(public http: HTTP) {

 ...

 retrieveConversation("123abc",

"XXXXXXXXXXX", http).then((conversation) => {

 console.log("Conversation ob-

ject is: " + conversation);

 console.log("Conversation token

is: " + conversation.token + " and the ID: " +

conversation.conversationId);

 },(onerror) => {

 console.log("Following error

happened: "+onerror);

 });

}

Component Name Dialogue Management / Spoken Language Generation

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

21

Component Description See above

Method Name generateAnswerToMessage

Method Description Sends an intent / a message to the chatbot of the chosen

communication and get the suitable answer back.

Parameters conversationID string

The ID of the chosen communication.

Intent string

The message / the intent to communicate.

conversationToken String

The token of the chosen communication

http Any

The native Plugin from Android or iOS

Callback Answer Text

The answer to the sent message

Example
import { generateAnswerToMessage } from 'com-

prise_natural_language_generation'

import { HTTP } from '@ionic-native/http/ngx';

...

constructor(public http: HTTP) {

 ...

 generateAnswerToMessage("123abc",

"hungry", "XXXXXXXXXXX", http).then((answer)

=> {

 console.log("Your answer is:

"+answer);

 },(onerror) => {

 console.log("Following error

happened: "+onerror);

 });

}

Component Name Text-To-Speech

Component Description
Transforms text into voice, which will be spoken out.

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

22

Currently uses the Cordova plugin as a solution to run na-

tive functionality on device, connected to Angular / Web-

Code on the Personal Server.

Method Name Speak

Method Description Transforms text into voice, which will be spoken out.

Parameters tts_options Object

Configuration object with parameters below.

tts_options.text String

Text to be spoken out.

tts_options.locale String

The language used, format "de-DE", "en-EN", ...

Callback success boolean

Success of started operation.

Example
declare var cordova: any;

...

constructor() {

 ...

 const tts_options = {"text": "Please

talk to me!", "locale": "en-EN"};

 cordova.plugins.COM-

PRISE_TextToSpeech.speak(tts_options, () => {

 console.log('Success')

 },(onerror) => {

 console.log("Following error

happened :"+onerror);

 });

}

2.3.2 Training Branch

Component Name Privacy-Driven Speech Transformation

Component Description
Removes personal information from speech by means of

the COMPRISE Speech and Text Transformers. Sends

speech to the Personal Server, and gets the resulting pri-

vacy-transformed speech. Based on the COMPRISE WP2

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

23

pipeline example24 including VTLN-based voice transfor-

mation25 followed by word masking26.

Method Name transformPrivateSpeech

Method Description
Transforms speech to a version which is free of personal

information. For more information, see D2.127.

Parameters http Any

The native Plugin from Android or iOS

Callback transformedAudio String

Base64 string of the transformed audio in WAV

Example
import { transformPrivateSpeech } from 'com-

prise_privacy_driven_speech_transformation'

import { HTTP } from '@ionic-native/http/ngx';

...

constructor(public http: HTTP) {

 ...

 transformPri-

vateSpeech(http).then((transformedAudio) => {

 const audio = new Audio();

 audio.src = "data:au-

dio/wav;base64,"+transformedAudio;

 audio.play();

 console.log("I just played your

transformed Audio!");

 },(onerror) => {

 console.log("Following error

happened :"+onerror);

 });

}

Component Name Privacy-Driven Text Transformation

Component Description
Removes personal information from text by means of the

COMPRISE Text Transformer28. Sends text to the Per-

sonal Server, and gets the resulting privacy-transformed

text.

Method Name transformPrivateText

24 https://gitlab.inria.fr/comprise/development/wp2_pipeline_example
25 https://gitlab.inria.fr/comprise/development/voice_transformation
26 https://gitlab.inria.fr/comprise/development/word-masking-tool
27 https://www.compriseh2020.eu/files/2019/08/D2.1.pdf
28 https://gitlab.inria.fr/comprise/text_transformer

https://gitlab.inria.fr/comprise/development/wp2_pipeline_example
https://gitlab.inria.fr/comprise/development/voice_transformation
https://gitlab.inria.fr/comprise/development/word-masking-tool
https://www.compriseh2020.eu/files/2019/08/D2.1.pdf
https://gitlab.inria.fr/comprise/text_transformer

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

24

Method Description
Transforms text to a version which is free of personal, pri-

vate information, using one translation strategy among the

following:

● REDACT_NE_REPLACEMENT = Deface all pri-

vate entities, e.g. "Donald Trump" becomes =

"XXXXXX XXXXX"

● WORD_BY_WORD_REPLACEMENT = Replace

private entities word by word, e.g. "Donald" as is

mapped to "John", "Trump" is mapped to "Doe"

● FULL_ENTITY_REPLACEMENT = Replace pri-

vate entities as complete entity, e.g. "Donald

Trump" as a whole is mapped to "John Doe"

Find more information about the differences in D2.129.

Parameters text string

The text to be transformed

strategy string

The translation strategy to apply, see options above.

http any

The native Plugin from Android or iOS

Callback transformedText string

Text without sensitive information.

Example
import { transformPrivateText, FULL_ENTITY_RE-

PLACEMENT } from 'comprise_pri-

vacy_driven_text_transformation'

import { HTTP } from '@ionic-native/http/ngx';

...

constructor(public http: HTTP) {

 ...

 transformPrivateText(text, FULL_EN-

TITY_REPLACEMENT, http).then((transformedText)

=> {

 console.log("I am free of pri-

vate content: "+transformedText);

 },(onerror) => {

 console.log("Following error

happened :"+onerror);

 });

}

29 https://www.compriseh2020.eu/files/2019/08/D2.1.pdf

https://www.compriseh2020.eu/files/2019/08/D2.1.pdf

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

25

2.3.3 Cloud Platform API

Component Name Cloud Platform

Component Description
Used to upload the register storage buckets for client ap-

plications, as well as for upload of speech and text data,

and model downloads. The API is documented in the

Cloud Platform portal30 and mapped to the methods listed

below. Note that some of the methods will have restricted

access rights, depending on whether they are used within

the App Wizard or a user application.

Method Names registerNewApplication()

listApplications()

editApplicationData()

getApplicationData()

deleteApplication()

uploadSpeechSegment()

listSpeechSegments()

deleteSpeechSegments()

getSpeechSegment()

submitSpeechTranscription()

deleteSpeechSegment()

uploadTextSegment()

listTextSegments()

deleteTextSegments()

getTextSegment()

submitTextTranscription()

deleteSpeechSegment()

listModelTypes()

trainNewModel()

getListOfModels()

downloadModel()

deleteModel()

Example
import { listTextSegments} from 'com-

prise_cloud_platform_api'

import { HTTP } from '@ionic-native/http/ngx';

...

30 https://comprise-dev.tilde.com/dashboard/api-documentation

https://comprise-dev.tilde.com/dashboard/api-documentation

GA Nº: 825081 – COMPRISE – D4.3 – Initial COMPRISE SDK prototype

26

constructor(public http: HTTP) {

 ...

 listTextSegments(api_id,

http).then((segments) => {

 console.log("These are the

transformed texts!");

 },(onerror) => {

 console.log("Following error

happened :"+onerror);

 });

}

3. Conclusion

This deliverable introduces the first prototype of the COMPRISE SDK, consisting of the COM-

PRISE Personal Server, the COMPRISE Client Library, and the COMPRISE App Wizard.

The main change compared to the architecture initially presented in Deliverable D4.1 is the

introduction of the COMPRISE Personal Server. Following this change, the COMPRISE Client

Library does not run on the user device at this stage, but on a Personal Server controlled by

the user.

According to the implementation plan in Deliverable D4.1, the COMPRISE SDK development

schedule is on time, regardless that the first version did not plan to include a Personal Server

solution.

Until Deliverable D4.5, which is planned for M30, the consortium will test and evaluate all the

solutions provided as part of the COMPRISE SDK to figure out necessary changes and ad-

justments. In addition, Speech-To-Text Language Model Personalisation, Spoken Language

Understanding Model Personalisation and component updates conducted in the context of

WP2, WP3, and T4.1 will be integrated within the SDK.

The results of the tests will be used to improve all components of the COMPRISE SDK, namely

the App Wizard, the Client Library and the Personal Server. This will be done to continuously

improve the experience of both application developers and users.

