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Document summary 
 
This deliverable introduces COMPRISE’s weakly supervised learning library in its initial 
incarnation. Weakly supervised learning addresses the problem that state-of-the-art supervised 
learning methods for many relevant tasks require enormous amounts of manually labelled data. 
In this document, we explore alternatives to this costly endeavour for two specific areas of the 
project: Speech-to-Text and text processing.   

Deliverable 4.2 consists of two parts: a software library and this document. An overview of the 
different system architectures is given in Section 2. The scientific approaches underlying the 
software tools are detailed in Section 3. For practical applications, Section 4 gives in-depth 
instructions on how to install and use the library. Finally, we discuss our achievements so far and 
present our plans for the next steps until month 27 (February 2021). 

For speech-to-text, we discuss the role of supervised learning of acoustic and language models 
and the transition from semi-supervised to weakly supervised learning methods. Our work 
leverages error prediction in a semi-supervised setup and dialogue states for weak supervision. 
The merit of the proposed methods is demonstrated through experiments which evaluate the 
improvements in speech-to-text performance under limited data scenarios. We also present a 
discussion on the cost savings expected from the proposed methods. 

For weakly supervised text processing, we focus on the Named Entity Recognition task as it is 
the basis for privacy-preserving text transformations in WP2. We present two approaches, namely 
a weakly supervised learning approach on dialogues and our first experiments with cross-domain 
Named Entity Recognition (currently on newswire data). We demonstrate the recognition gains 
achieved through our methods by presenting and analysing relevant experiments. 

Further, this deliverable introduces all necessary software tools for users and developers to apply 
our techniques. The two parts of the library can be accessed here: 

 Speech-to-Text: 

https://gitlab.inria.fr/comprise/spoken-language-understanding-weakly-supervised-

learning 

 Text processing: 

https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning 

 

  

https://gitlab.inria.fr/comprise/spoken-language-understanding-weakly-supervised-learning
https://gitlab.inria.fr/comprise/spoken-language-understanding-weakly-supervised-learning
https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning
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1. Introduction 

Voice and language technologies have seen a major boost in the last ten years thanks to the 

development of new techniques for statistical classification. Especially the advent of deep neural 

networks has pushed the performance boundaries of many speech and natural language 

processing tasks. However, despite the advantages of statistical learning, in practice very large 

amounts of data are often required in order to learn best-performing models. While collecting high 

quality data may already be a major effort, it is often only the first step: when supervised learning 

methods are employed, the collected data must also be annotated which adds a whole layer of 

complexity, effort, and cost. This is one of the reasons why the voice assistant market is currently 

dominated by big corporations: the cost for the entire pipeline of collecting and curating data, and 

then training good statistical models is often too high for small and medium enterprises. 

In COMPRISE, we are exploring the possibility of using weakly supervised learning methods for 

speech recognition and spoken language understanding tasks that do not require the same 

amount of data annotation efforts. Weakly supervised learning methods exploit existing weak 

labels which are inexpensive and easier to obtain. The weak labels can be noisy predictions made 

by an existing model, error patterns of a model, high-level labels not directly related to the task at 

hand, etc. This contrasts with classical supervised learning methods which require detailed 

annotations for all data, and with semi-supervised learning which combines a small amount of 

labelled data with a large amount of completely unlabelled data.  

The main goal of this line of our work is to enable smaller European companies to enter the market 

for voice-based technologies although they do not have the means to dedicate sizable budgets 

to elaborate annotation tasks. To this end, we examine multiple alternative approaches that, 

depending on the specific task, may bring the best possible results. While performance on par 

with supervised methods on large amounts of fully annotated data cannot be expected, we are 

looking for approaches that offer the best effort-to-outcome ratio, i.e., the best performance for 

the smallest annotation cost. 

The two important parts of voice-based systems we focus on in COMPRISE are speech and text 

processing. Since these two fields are quite different in nature, they require individual methods 

tailored to the specificity of each task. 

Speech-to-Text (STT) typically relies on two main component models, namely the Acoustic Model 

(AM) and the Language Model (LM). Most practical applications begin with an initial AM and an 

initial LM, which are typically trained on crowd- or expert-transcribed speech data. Speech data 

collected from the application users is then used to improve the AM and the LM on a regular basis. 

While improvements of the AM may saturate after some iterations, LM may continue to improve. 

In any case, there is a need for reliable transcription of the collected speech data, which incurs a 

heavy cost when employing human transcribers. 

In favour of cost effectiveness, semi-supervised training of neural network AMs has been an 

active topic of research in the STT community. Most common approaches for semi-supervised 

training of AMs generate automatic transcripts for unsupervised speech data using a seed STT 

trained on the supervised speech data. However, domain mismatch with existing data collections 

and limited amount of realistic unsupervised speech data — a typical situation when building a 
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new voice assistant app — limit the performance of state-of-the-art semi-supervised training 

methods. By contrast, weakly supervised learning methods are expected to achieve performance 

gains beyond those obtained from semi-supervised training, with zero or minimal increase in 

labelling costs. The speech processing part of the library provides two sets of methods for training 

STT models, namely training with STT error prediction and weak supervision with dialogue states. 

It focuses on obtaining reliable transcriptions which can then be used for training both STT AMs 

and LMs. 

Besides speech processing, many voice-based applications require additional Spoken Language 

Understanding (SLU) steps to extract various types of information from the spoken user input or 

to classify a spoken utterance according to a given scheme. Examples include, e.g., Named Entity 

Recognition (NER) where mentions of specific persons, locations, organisations, etc., are to be 

automatically identified, and intent classification, where the task is to determine the purpose of 

each utterance in a conversation. 

For this initial version, we focus on NER for the text processing part of the library because it plays 

a central role for the work on Text Transformation in Work Package 2. However, the approach 

described below is not limited to this task. In fact, one of our next steps will be to apply this weak 

supervision technique to other SLU and Dialogue Management tasks, and measure its 

effectiveness. 

The situation addressed by this Work Package is that in which developers who intend to employ 

COMPRISE technology in their business application find themselves in a situation where they 

need to retrain some of the COMPRISE machine learning models to best match their application 

domain. Without such retraining, the performance would likely be poor because the specificities 

of the domain will not be captured sufficiently by general purpose models, or by models created 

for different domains. 

In this deliverable, we present the current state of our research that addresses these problems 

for speech-to-text and text processing. We introduce both an initial version of the software 

components needed to reproduce, extend, and apply our results as well as a detailed description 

of the scientific underpinnings. 

2. Design and implementation of learning components 

2.1. Learning components for Speech-to-Text (STT) 

The initial weakly supervised learning library of COMPRISE provides two main learning 

components for STT. These two components represent the two main approaches proposed in 

COMPRISE: (a) training driven by STT error predictions and (b) weakly supervised training based 

on utterance-level dialogue state labels. These two approaches can be used independently or 

combined together, if utterance-level weak labels are available. These approaches are presented 

and evaluated in Section 3.1.1. Details on the usage of the corresponding software components 

are provided in Section 4. In this section, we present a high-level overview of the design and 

implementation of the software components. As per the COMPRISE global architecture, weakly 

supervised learning of STT entirely takes place in the training branch and on the cloud platform. 
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Figure 1: Overview of error detection driven training of STT models. 

 

Figure 1 presents a block diagram to describe the design and implementation of error detection 

driven training of STT models. Table 1 presents a quick reference on its design and 

implementation. The implementation also relies on the Kaldi STT toolkit3, as highlighted in blue. 

The main contributions through the COMPRISE library are highlighted in red. 

Figure 2 presents a block diagram to describe the design and implementation of dialogue state 

driven weakly supervised training of STT models. Table 2 presents a quick reference on its design 

and implementation. Along with the Kaldi STT toolkit, the implementation relies on the SRILM 

toolkit4. 

 

                                                
3 http://kaldi-asr.org/ 
4 http://www.speech.sri.com/projects/srilm/ 

http://kaldi-asr.org/
http://www.speech.sri.com/projects/srilm/
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Table 1: Design and implementation of error detection driven training of STT. 

Step Description Inputs Outputs Implementation notes 

1 
Train seed STT 

models 
supervised 

data 
seed AM, LM 

Kaldi Chain recipe: Bash 
scripts with Kaldi binaries for 

processing speech, Perl 
scripts to manage inputs and 

train LM, Python scripts to 
train AM. 

2 
Prepare for Error 

Detection 

unsupervised 
speech, dev 

data 

confusion 
networks 

Kaldi binaries to decode 
speech to lattices, convert 
lattice to confusion network 

3 Train Error Detector 
dev confusion 

networks 

error 
detection 

model 

COMPRISE libraries: Python 
scripts to extract features, 

train error model 

4 
Get unsupervised 
speech transcripts 

unsupervised 
speech 

confusion 
networks 

speech 
transcripts 

COMPRISE libraries: Python 
scripts to tag errors, format 

transcripts 

5 Retrain models combined data new AM, LM Kaldi Chain recipe (as Step 1) 

 

Table 2: Design and implementation of dialogue state driven weakly supervised training of STT. 

Step Description Inputs Outputs Implementation notes 

1 
Train seed STT 

models 
supervised data seed AM, LM 

Kaldi Chain recipe: Bash 
scripts with Kaldi binaries for 

processing speech, Perl 
scripts to manage inputs and 

train LM, Python scripts to 
train AM. 

2 
Prepare un- 

supervised data 
unsupervised 

speech 
decoded 
lattices 

Kaldi binaries to decode 
speech to lattices 

3 
Train dialogue 

state LMs 
supervised data 

dialogue 
state LMs 

COMPRISE libraries: Bash 
scripts relying on SRILM tool 

4 
Rescore lattices 

for training 

unsupervised 
speech lattice, 

dialogue state LM 

rescored 
lattices and 
transcripts 

COMPRISE libraries: Bash 
scripts relying on Kaldi 

binaries 

5 Retrain models combined data new AM, LM Kaldi Chain recipe (as Step 1) 
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Figure 2: Overview of dialogue state driven weakly supervised training of STT models. 

2.2 Learning components for text processing 

The second part of this library concerns text processing. We present a high-level overview of the 

software components for our weakly supervised learning approach. In this initial version of the 

library, we focuse on one specific task, viz. Named Entity Recognition, although the implemented 

algorithm is general and will be transferred to a wider spectrum of tasks in future revisions. 

Figure 3 displays the general architecture of the text processing part of the weakly supervised 

learning library. It is implemented using the Python programming language and the PyTorch5 

toolkit for neural networks. Table 3 presents a quick reference on its design and implementation. 

                                                
5 https://pytorch.org/ 

https://pytorch.org/
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Figure 3: Overview of weakly supervised learning components for text processing. 

 

Table 3: Design and implementation of weakly supervised learning for Named Entity 

Recognition. 

Step Description Inputs Outputs Implementation notes 

1 Load config Settings file 
Experimental 

settings 

Parses command line 
parameters and loads a 

JSON-encoded settings file. 

2 
Create base neural 

network 
Experimental 

settings 
Base network 

Creates a BILSTM model for 
Named Entity labeling 

3 Create noise model 
Experimental 

settings, clean 
and noisy data 

Noise model 

Clean (= manually annotated) 
and noisy (weakly annotated) 
data are used to initialise a 

noise matrix (confusion matrix) 
for a noise layer that sits on 

top of the base network 

4 Train network 

Experimental 
settings, Neural 
models, clean 
and noisy data 

Weakly 
supervised 
NER model 

Base and noise model are 
trained in turns, using a 

configurable batch size and 
amount of epochs 

 

Experimental  
Settings 

Clean Noisy 

Weakly supervised NER Model 

Confusion 
Matrix Base Network Noise Model 

Network Creator 

Model Training 
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3. Scientific approach 

The initial weakly supervised learning library applies our research outcomes in COMPRISE. The 

scientific approaches followed for STT and text processing are described below. 

3.1. Weakly supervised learning for Speech-to-Text 

State-of-the-art STT systems use deep neural network based AMs trained with sequence training 

objectives like Connectionist Temporal Classification (CTC) or Lattice-Free Maximum Mutual 

Information (LF-MMI) [6]. The LF-MMI approach requires smaller amounts of transcribed speech 

data. However, its performance starts degrading on less than 100 h of conversational speech 

data [6].  In favor of cost effectiveness, semi-supervised training of neural network AMs has been 

an active topic of research in the STT community. Most common approaches for semi-supervised 

training of AMs generate automatic transcripts for unsupervised speech data using a seed STT 

model trained on supervised speech data. Typical approaches perform best path decoding of the 

unsupervised speech and select new speech-transcript pairs based on different filtering schemes 

(see [7] for relevant references). Interestingly, the LF-MMI approach has been extended to semi-

supervised training of AMs [7] and remains state-of-the-art. However, domain mismatch and 

limited amount of unsupervised speech data are expected to affect its performance. 

Similarly, STT systems rely on statistical n-gram LMs or deep neural network based LMs, based 

on the amount of domain/application specific text data available for training and adapting the LM. 

Reliable text transcriptions from the target domain/application are required in both approaches. 

For some applications, existing text data can be exploited to train LMs. However, most novel 

applications must rely on fully supervised or semi-supervised methods to obtain speech 

transcriptions for LM. Moreover, it must be noted that cost effective semi-supervised training 

methods have different end objectives for training AMs and LMs. AM training depends on low-

level phone sequences which may even come from STT lattices containing alternate hypotheses 

(as in the case of semi-supervised LF-MMI). By contrast, LM training requires reliable transcripts 

(or information) of possible high-level word sequences. 

3.1.1 Semi-supervised to weakly supervised training 

As compared to semi-supervised training, weakly supervised training methods exploit existing 

weak labels which are inexpensive and easier to obtain. The weak labels can be noisy predictions, 

error patterns or high-level labels not directly related to the task at hand. Weak supervision is 

expected to achieve performance gains beyond those obtained from semi-supervised training, 

with zero (or minimal) increase in labelling costs. Moreover, these methods can build and improve 

on top of existing semi-supervised training methods. In the context of STT, starting with semi-

supervised training methods is both essential and effective. Seed models can be trained on public 

domain speech corpora [8] or existing application-specific corpora. The initial COMPRISE library 

for weakly supervised learning of STT provides two sets of methods for training of STT models, 

namely training with STT error prediction and weak supervision with dialogue states. It should be 

noted that the initial library focuses on obtaining reliable transcriptions which can be used for 

training both STT AMs and LMs. 
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3.1.1.1 Training with STT error prediction 

We propose a new error detection driven semi-supervised training method, which uses an explicit 

error detection model to tag the reliable word sequences in the hypotheses obtained on the 

unsupervised speech data. Figure 4 shows a block diagram of the proposed approach. As shown 

in the figure, supervised training data with accurate speech-transcript pairs are used to train the 

seed AM and the seed LM. The supervised training data could be a good amount of read speech 

or a small amount of application-specific data. These seed models are used to decode the 

unsupervised speech data into STT lattices. STT confusion networks (aka sausages) are obtained 

from these lattices using Minimum Bayes Risk (MBR) decoding [9]. 

An error detection model is trained on features extracted from the STT confusion network [10]. 

Feed-forward neural networks or sequence based Bi-directional Long Short Term Memory 

(BLSTM) neural networks can be used as the error tagging model. A basic problem with training 

an STT error detector model is that the confusion statistics and errors made on the STT training 

set and unseen utterances do not match. Hence, the error detector is trained on a development 

set which belongs to the target domain.

 
Figure 4: Error detection driven semi-supervised training of STT models. 
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An error detector model, discussed below, tags the confusion network bins into three classes: 

<no-error>, <error> and <eps>. Tag <no-error> indicates that the most probable symbol in the 

confusion bin is correct.  <error> represents substitution, deletion and insertion errors due to the 

most probable symbol. <eps>6 differentiates a bin that ‘correctly hypothesises’ no output word as 

the most probable symbol. We use these tags from the error detector to (a) retain the most 

probable symbol of a confusion bin tagged as <no-error>, (b) accept the ‘no output word’ 

hypothesis of a confusion bin tagged as <eps>, and (c) replace the most probable symbol of a 

confusion bin tagged as <error> with the <unk> symbol which corresponds to the garbage phone 

or spoken noise. Hence, we refer to this approach as Err2Unk semi-supervised training. Once the 

Err2Unk transcriptions are obtained for the unsupervised speech data we combine this dataset 

with the supervised dataset and train new STT models. The AM is trained using the standard LF-

MMI approach and the LM is a statistical n-gram model. 

3.1.1.2 Weak supervision with dialogue state labels 

Human-machine dialogue typically involves a sequence of system-user utterance pairs, 

representing questions and answers between the system and the user. The dialogue system 

maintains the history and state of the dialogue to manage the general flow of the conversation. 

Table 4 shows a sample human-machine dialogue and the possible dialogue states maintained 

internally by this dialogue system. The ground-truth transcription of the user utterance may not 

be available for training and improvement of the STT models. However, the corresponding 

dialogue states may be available, from the dialogue system or through inference on the non-

reliable STT transcriptions. Moreover, the dialogue states can be used as weak labels to obtain 

a more reliable automatic transcription of the user utterance using more complicated methods, 

which otherwise cannot be used in a live dialogue system. 

We propose to use dialogue state adapted LMs to obtain more reliable word sequences in the 

hypotheses obtained on the unsupervised speech data. Figure 5 shows a block diagram of the 

proposed approach. Similar to semi-supervised training, a seed AM and a seed LM trained on the 

supervised dataset are used to decode the unsupervised speech data. Given dialogue states 

corresponding to utterances in the unsupervised data, pre-trained dialogue state specific LMs are 

used to rescore the decoded lattices. Hypotheses for the unsupervised speech are obtained from 

the rescored lattices. We merge this dataset with the supervised dataset and train the dialogue 

state based weakly supervised models using one of the previously discussed semi-supervised 

training methods.  

 

Table 4: Example of a human-machine dialogue and possible dialogue states. 

Dialogue States  System Utterance User Utterance 

WELCOME hi how may I help you cheap restaurant near me 

REQUEST FOOD what kind of food do you prefer chinese cuisine 

                                                
6 From epsilon arc (or null arc) in STT and Weighted Finite State Transducer literature. 

 



GA Nº: 825081 – COMPRISE – D4.2 Initial weakly supervised learning library  

15 

SUGGEST PLACE how about shanghai express sounds good to me 

REQUEST CALL should i place a call no tell me the closing time 

 

 
Figure 5: Dialogue state based weakly supervised training of STT models. 

3.1.2 Experiments and evaluation 

3.1.2.1 Experimental setup 

We investigate STT improvements in three different scenarios detailed below. Table 5 briefly 

presents the different datasets and their splits used in these evaluation setups. 

 

Table 5: Datasets and splits used for evaluation. LS: Librispeech, VM: Verbmobil, LG: Let's Go. 

 LS100-VM20 VM5-VM20 LG4-LG19 

Supervised LS 100 h VM 5 h LG 4 h 

Unsupervised VM 20 h VM 20 h LG 19 h 
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Dev VM 2 h VM 2 h LG 6 h 

Test VM 3 h VM 3 h LG 6 h 

 

Read speech to conversational speech: Public domain speech data collection efforts have led 

to a significant amount of read speech in different languages [8]. However, AMs trained on such 

read speech corpora show degraded performance on conversational speech. Moreover, not all 

languages have large amounts of read speech datasets to begin with [8], and conversational 

speech data is limited in amount and mostly untranscribed in the initial stages. We emulate this 

scenario by using the English read speech corpus Librispeech [11] as our supervised dataset, 

and English conversational speech from the Verbmobil corpus [12] as the unsupervised data. We 

denote this setup as LS100-VM20. See Table 5 for the amount of data in different splits. We have 

ensured that there are no overlapping speakers or conversations across Verbmobil splits.  

Human-human conversations: We investigate the matched domain limited data scenario 

wherein both the supervised and unsupervised data belong to the Verbmobil corpus. We denote 

this setup as VM5-VM20. We have ensured that there are no overlapping speakers or 

conversations across these two subsets. The development and test sets are the same as for 

LS100-VM20.  

Human-machine dialogue: We also analyse the matched domain scenario wherein both the 

supervised and unsupervised data are human utterances extracted from a human-machine 

dialogue system. We use subsets of the annotated Let's Go dataset7 to emulate this setup. We 

use data corresponding to the first 15 days of October 2008 as the supervised dataset and speech 

corresponding to the next two and half months as unsupervised data. Data corresponding to the 

first 15 days and the last 15 days of September 2009 are treated as development and test sets, 

respectively. We denote this setup as LG4-LG19.  

3.1.2.2 Evaluation of error detection driven semi supervision 

Table 6, Table 7 and Table 8 compare the performance of different methods for semi-supervised 

training of AMs and LMs on the LS100-VM20, VM5-VM20, and LG4-LG19 setups, respectively. 

Comparison is in terms of the Word Error Rate (WER) obtained on the development and test sets. 

We also report the Relative WER Improvement (RWI) with respect to the seed model, which is 

calculated as 

 

RWI =
SeedModelWER − GivenModelWER

SeedModelWER
⋅ 100. 

 

Additionally, we also include the WER Recovery Rate (WRR) obtained with respect to the seed 

model, calculated as: 

                                                
7 https://dialrc.github.io/LetsGoDataset/ 

 

https://dialrc.github.io/LetsGoDataset/
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WRR =
SeedModelWER − GivenModelWER

SeedModelWER − OracleModelWER
. 

 

The WER, the RWI and the WRR of our proposed Err2Unk approach (see Section 3.1.2.1) are 

compared to those achieved by different models and approaches. These include the seed models, 

classical semi-supervised training with best path decoding of the unsupervised speech, state-of-

the-art semi-supervised LF-MMI, and oracle (fully supervised) models which have access to 

ground truth transcriptions of the unsupervised speech. Our Err2Unk approach uses a BLSTM 

error detection model which achieves micro-average F1 scores of 0.77, 0.84, and 0.81 on the 

unsupervised speech data of the LS100-VM20, VM5-VM20, and LG4-LG19 setups, respectively. 

The LMs are trained on the text data available for training AMs. In case of semi-supervised LF-

MMI, the word-level hypotheses corresponding to the best path are used to train the LM. 

Table 6 shows that semi-supervised LF-MMI performs similarly to classical semi-supervised 

training in a domain-mismatched, limited data setup. Err2Unk semi-supervised training performs 

significantly better than the other two semi-supervised approaches. WER improvements across 

AM training and AM+LM training are consistent. WRRs across these two training scenarios are 

quite similar. However, relative improvements (RWI) indicate that WER improvements from LM 

are higher, except for the Err2Unk approach where AM and LM improvements are almost similar. 

The evaluation in Table 7 shows that the proposed Err2Unk approach performs best even in a 

matched-domain setup. WRR comparisons show that the Err2Unk approach can achieve 75% of 

the possible improvement in AM and 45% of it in AM+LM. Semi-supervised training with the best 

path performs surprisingly well and better than semi-supervised LF-MMI in this setup. Comparison 

of the test WERs and RWIs in Tables 6 and 7 indicates that the improvement achieved by semi-

supervised training reduces in domain-mismatched scenarios (in Table 6), even though seed 

models are trained on a larger amount of read speech data.  

 

Table 6: Semi-supervised training on domain-mismatched data (LS100-VM20). Librispeech 100 

h (LS100) is used as supervised data and Verbmobil 20 h (VM20) as unsupervised data. AMs 

are trained with LF-MMI. 

Type of Supervision 

3-gram LM on 
LS100 

(AM only improvement) 

3-gram LM on 
respective data for AM 

(AM + LM improvement) 

Dev 
WER 

Test 
WER 

Test 
RWI 

Test 
WRR 

Dev 
WER 

Test 
WER 

Test 
RWI 

Test 
WRR 

Seed (LS100) 40.50 40.00 - - 40.50 40.00 - - 

Semi-sup best path 38.96 38.49 3.8% 15% 35.42 35.76 10.6% 24% 

Semi-sup LF-MMI 38.15 38.28 4.3% 17% 34.17 35.23 12.0% 27% 

Semi-sup Err2Unk 37.14 36.45 8.9% 35% 32.63 33.04 17.4% 39% 

Oracle (LS100+VM20) 30.75 29.63 - - 21.94 22.20 - - 
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Table 7: Semi-supervised training on matched-domain human-human conversations (VM5-

VM20). Verbmobil 5 h (VM5) is used as supervised data and Verbmobil 20 h (VM20) as 

unsupervised data. AMs are trained with LF-MMI. 

Type of Supervision 

3-gram LM on  
VM5 

(AM only improvement) 

3-gram LM on  
respective data for AM 

(AM + LM improvement) 

Dev 
WER 

Test 
WER 

Test 
RWI 

Test 
WRR 

Dev 
WER 

Test 
WER 

Test 
RWI 

Test 
WRR 

Seed (VM5) 39.29 38.56 - - 39.29 38.56 - - 

Semi-sup best path 32.95 33.05 14.3% 66% 31.92 32.06 16.9% 38% 

Semi-sup LF-MMI 34.25 34.91 9.5% 44% 33.76 34.35 10.9% 25% 

Semi-sup Err2Unk 32.19 32.26 16.3% 75% 30.83 30.91 19.8% 45% 

Oracle (VM5+VM20) 30.23 30.17 - - 21.28 21.43 - - 

 

Table 8 shows the performance on matched-domain dialogue system utterances. The proposed 

Err2Unk approach continues to give the best performance, although the WER difference is not 

statistically significant over semi-supervised LF-MMI. LM improvements are limited in this setup, 

as it can be observed from the RWI and also the WER of the oracle system. We hypothesise that 

this could be due to the presence of several new named entities in the development and test set. 

 

Table 8: Semi-supervised training on matched-domain human-machine dialogues (LG4-LG19). 

Let’s Go 4 h (LG4) is used as supervised data and Let’s Go 19 h (LG19) as unsupervised data. 

AMs are trained with LF-MMI. 

Type of Supervision 

3-gram LM on  
LG4 

(AM only improvement) 

3-gram LM on  
respective data for AM 

(AM + LM improvement) 

Dev 
WER 

Test 
WER 

Test 
RWI 

Test 
WRR 

Dev 
WER 

Test 
WER 

Test 
RWI 

Test 
WRR 

Seed (LG4) 36.67 36.03 - - 36.67 36.03 - - 

Semi-sup best path 34.36 33.61 6.7% 32% 33.95 33.05 8.3% 30% 

Semi-sup LF-MMI 32.44 31.21 13.4% 63% 32.11 30.94 14.1% 52% 

Semi-sup Err2Unk 32.33 30.98 14.0% 66% 32.05 30.56 15.2% 56% 

Oracle (LG4+LG19) 30.01 28.38 - - 28.31 26.20 - - 
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3.1.2.3 Evaluation of dialogue state based weak supervision 

Table 9 presents an evaluation of the proposed weakly supervised training of STT models (see 

Section 3.1.2.2). Weak supervision from dialogue states is used to improve over the previously 

presented semi-supervised training approaches. Table 9 shows that this weak supervision 

significantly improves the performance of the best path based semi-supervised training approach 

(evaluated in Table 8), by contributing both towards AM and LM improvement. A combination of 

the two proposed approaches (Weak-sup DS, Err2Unk), i.e., error detector driven semi-

supervised training and dialogue state based training of AM+LM, gives even better improvements. 

 

Table 9: Weakly supervised training with dialogue state (DS) on human-machine dialogues 

(LG4-LG19). Let’s Go 4 h (LG4) is used as supervised data and Let’s Go 19 h (LG19) as 

unsupervised data. AMs are trained with LF-MMI. DS based LMs are applied in the “AM+LM 

improvement” results only. 

Type of Supervision 

3-gram LM on  
LG4 

(AM only improvement) 

3-gram LM on  
respective data for AM 

(AM + LM improvement) 

Dev 
WER 

Test 
WER 

Test 
RWI 

Test 
WRR 

Dev 
WER 

Test 
WER 

Test 
RWI 

Test 
WRR 

Seed (LG4) 36.67 36.03 - - 36.26 35.20 - - 

Semi-sup best path+DS 33.64 32.82 8.9% 42% 33.00 31.65 10.1% 38% 

Weak-sup DS, Err2Unk 32.43 30.71 14.8% 70% 31.65 30.04 14.7% 56% 

Oracle (LG4+LG19) 30.01 28.38 - - 27.91 25.92 - - 

3.1.3 Discussion on cost effectiveness 

In order to highlight the cost effectiveness of our method we present a quick analysis which 

translates WER improvements into the number of hours of human transcribed training data that 

would be required to achieve the same performance with fully supervised training. Figure 6 plots 

the WER achieved by different systems as a function of the amount of supervised training data. 

The graph corresponding to supervised AM+LM shows the WER obtained by training the STT 

models (AM+LM) on different subsets of the Let's Go dataset. Semi-supervised LF-MMI and the 

proposed Err2Unk semi-supervised training approach use 4 h of supervised data and 19 h of 

unsupervised data (LG4-LG19), as discussed in Section 3.1.3. The WERs obtained from these 

methods are mapped to the equivalent number of hours of supervised training data. Note that the 

development set also comprises human transcribed speech data but it is not counted as part of 

the supervised training data in this chart, since all the compared methods rely on the development 

set for performance tuning.  
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Figure 6: Comparison of all methods in terms of the amount of supervised training data 

required to achieve a given WER on the Let's Go dataset. The development set is used by all 

methods and is not included here in the supervised training data. 

 

Figure 6 shows that the proposed Err2Unk approach for semi-supervised AM+LM training 

achieves a WER equivalent to that obtained with ~10.4 h of supervised training data, whereas it 

actually uses 4 h only. This implies a 62% relative reduction in the required amount of supervised 

training data without including the development set, and a 39% relative reduction if we include 

the development set. Semi-supervised LF-MMI achieves a WER performance equivalent to that 

obtained with ~9.6 h of supervised training data, which implies 58% and 36% relative reductions 

without and with the development set, respectively. The combination of the two proposed 

approaches (Weak-sup DS, Err2Unk) achieves a WER performance equivalent to that obtained 

with ~11.4 h of supervised training data. This implies 65% and 43% relative reductions without 

and with the development set, respectively. 

3.2. Weakly supervised learning for text processing 

We now describe our weakly supervised learning approach for SLU. Generally speaking, before 

developers can begin training a new model, they need to perform two preparatory tasks: 
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1. create a sufficiently large collection of in-domain data, 

2. annotate the collected data with the desired labels. 

Here, we are talking about a supervised learning task where the goal is to classify data points into 

one or multiple predefined categories. Each category has a distinct label (for instance, for the 

NER task, labels such as LOCATION, ORGANISATION, etc.) from a small set of labels, and 

annotating means identifying instances of the categories and attaching the correct label to them. 

Even if we focus on the task of NER, step 2 is still domain-dependent, since different applications 

require different types of named entities to be recognised. For instance, in a medical domain, the 

names of specific conditions or diseases are of central relevance, while such entities will possibly 

never appear in data for a cooking assistant. 

The data collection task (step 1) will become fairly simple once the application has been deployed 

to a user-base: more and more real-life data is created every time the application is used, and 

COMPRISE provides the necessary means to make use of this growing data collection in a 

privacy-preserving manner. However, even before deployment, a certain amount of realistic data 

will have to be collected to bootstrap the model. While this step is not the focus of our work here, 

there are a few options on how to create such an initial data collection, including manually creating 

such data (bearing the risk of not being too realistic), simulations (such as, e.g., Wizard-of-Oz 

experiments), or using existing data collections, if applicable. In the following, we assume that 

appropriate data have already been collected and focus on step 2, the annotation task. Note that 

a potential difference between data collected for bootstrapping and data collected during the 

actual use of the deployed system is that the former, when done under lab conditions, may not 

have undergone any privacy transformations. In this initial version of the library, we focus on this 

condition and will study the effect of WP2 text transformations on weakly supervised learning in 

subsequent releases. 

The basic underlying assumption of weakly supervised learning is that: 

1. Manually labeling the data will give high-quality annotations, but is expensive. 

2. There are automatic means to create mass annotations cheaply, but imperfectly. 

As a consequence of these assumptions, it is often prohibitive for the developer to fully annotate 

all of the collected data by hand, but manually labeling a small portion is feasible. On the other 

hand, all data can be annotated automatically but the resulting labels are expected to be wrong 

every now and then. Annotations that are incorrect at a significant percentage are said to be noisy. 

This leads to interesting research questions, such as: 

 How much data needs to be manually annotated minimally in order to reach a decent 

performance in the resulting machine learning model? 

 How much noise in the automatic annotations can be handled by the weak supervision 

model? 

For the latter, it is clear that in cases when there is too much noise in the automatically generated 

annotations, there will not be any or only very little relevant information to be gained from providing 
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such annotations at all. It is thus interesting to study how robust a weak supervision approach is 

to the amounts of noise and also to which types of noise. 

3.2.1 Approach 

Our approach is based on previous work at USAAR in the context of low-resource languages 

where the problem of non-existent manual annotations is similar albeit differently motivated [2]. 

The basic idea is to augment a neural-network architecture with a noise layer that explicitly models 

the noise found in the automatically annotated data. That is, our model consists of two parts, a 

base model part and a noise model part. The noise layer is only needed during the training and 

can be dismissed afterwards. 

For the task at hand, Named Entity Recognition, our data consist of pairs of words and labels, 

either clean or noisy. Therefore, let us refer to the clean dataset as 𝐶 = {(𝑥1, 𝑦1), . . . (𝑥𝑛, 𝑦𝑛)} and 

the noisy dataset as 𝑁 = {(𝑥1, 𝑧1), . . . (𝑥𝑚, 𝑧𝑚)}. Here, the words to be classified are identified by 

the letter x, clean labels are written as y, and noisy labels are referred to by the letter z. The set 

of all labels is referred to as L. 

We then define the base model as a simple multi-label neural network softmax classifier: 

𝑝(𝑦 = 𝑖 ∨ 𝑥; 𝑤) =
exp (𝑢𝑖

𝑇ℎ(𝑥))

∑ exp
|𝐿|
𝑗=𝑖 (𝑢𝑗

𝑇ℎ(𝑥))
 

where h is a non-linear function or a more complex neural network and w are the network weights 

including the softmax weights u. This base model is then extended, as mentioned above, by an 

additional noise layer to create a noise model, with the idea that the base model is trained only 

using the clean dataset C, and the noise model is trained using only the noisy dataset N (see 

Figure 7). 

 
 

Figure 7: General architecture of our weakly supervised learning approach for NER. 

 

As the vertical arrows indicate, the network and softmax weights are shared between the two 

models. The noise model 𝜃 translates predicted labels to noisy labels: 𝜃𝑖,𝑗 = 𝑝(𝑧 = 𝑙𝑖 ∨ 𝑦 = 𝑙𝑗) 
which we estimate as with the help of a confusion matrix b and using another softmax function: 
 

𝜃𝑖,𝑗 = softmax(𝑏𝑗)
𝑖
. 
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The weights of the confusion matrix are learned, we initialise it by first generating noisy labels for 

all instances of the clean set C employing the same process that is used to generate the labels 

in N. Then, we set the weights by making use of both the clean and noisy data: 

 

𝑏𝑖,𝑗 = log (
∑ 1𝑦𝑡=𝑙𝑖

|𝐶|
𝑡=1 1𝑧𝑡=𝑙𝑖

∑ 1𝑦𝑡=𝑙𝑖

|𝐶|
𝑡=1

) 

 

The loss functions for the base and the noise model are the standard cross entropy and negative 

log-likelihood loss respectively. 

In each epoch, the models are trained in alternating fashion, first the base model followed by the 

noise model. Although we assume that more noisy than clean data is available, each epoch only 

provides |C| data points to the base model and the noise model, respectively. We iterate over N 

in a random fashion to provide different subsets to the noise model in each epoch. 

Our method is not the first to model noise using a confusion matrix, see e.g. [3-5]. Many previous 

works assume that there are no clean annotations available at all. We argue, however, that a 

small amount of clean annotations is often attainable and can complement the noisy annotations 

to yield better results overall. A further review of learning in the presence of noisy labels is given 

in [1]. 

3.2.2 Data 

3.2.2.1 Clean labels 

The software for text processing provided in this library has been tested experimentally using the 

Verbmobil corpus [12], more specifically a subset of the corpus consisting of 27,227 English 

utterances. Since the corpus does not provide NER labels per se, we used a combination of 

crowdsourcing and tool-assisted labeling to annotate the corpus: around 20% of the data were 

annotated by volunteers using the platform Figure Eight8, while the remaining 80% were first pre-

annotated by an automatic tagger (spaCy9) and then corrected manually. 

As the domain of the used Verbmobil conversations is business meeting negotiations, we employ 

the five named entities, plus one label for all words that are not named entities (see Table 10). 

 

Table 10: The five Named Entity types used for the Verbmobil annotations. 

Label Description Example 

PER Person names Mr. Miller 

LOC Locations London 

                                                
8 https://www.figure-eight.com 
9 https://spacy.io 

https://www.figure-eight.com/
https://spacy.io/
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ORG Organisations Früh Kölsch brewery 

DATE Date references March 

TIME Time expressions Eight o’clock 

O All other words  

 

The words are annotated using the "BIO"-scheme, i.e., for each expression of a named entity of 

type X, the first word of the expression gets labelled as B-X and all other words (if any) are labelled 

I-X. The following example illustrates this scheme: 

 

Saturday , the fourth , I have a lunch meeting from twelve to two . 

B-DATE I-DATE I-DATE I-DATE O O O O O O                       B-TIME I-TIME I-TIME I-TIME O 

 

The data is split into fixed training, development, test sets as shown in Table 11. 

 

Table 11: Training / development / test split of the Verbmobil data. 

split #sentences % 

train 19151 ~70 

dev 2846 ~10 

test 5230 ~20 

 

The distribution of labels is roughly the same across all three splits. In Table 12, the “B-” and “I-” 

labels have been accumulated into single labels for clarity of presentation. 

 

Table 12: Label distributions in the training, development and test datasets. 

Label train (%) dev (%) test (%) 

PER 0.37 0.30 0.28 

LOC 0.69 0.69 0.59 

ORG 0.34 0.45 0.37 

DATE 8.64 8.57 8.56 

TIME 7.01 7.16 7.27 

O 82.96 82.83 82.92 
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3.2.2.2 Noisy labels 

For our experiments, we used two different methods to create label noise on the training data, 

allowing us for a variety of different annotations of the Verbmobil conversations. In the sampling 

approach, noise is introduced by randomly assigning labels to a choosable subset of the clean 

data. Complementing this approach is the knowledge-based method, in which external gazetteers 

are used together with hand-written rules in order to assign labels to the data. 

 

Sampling noise 

A straight-forward way to introduce noise into otherwise clean annotations is to replace some 

portion of the correct annotations with labels that are selected at random. The replacement labels 

should come from the same set L of labels as the clean labels. There are two major parameters 

in this approach that allow us to control properties of the resulting noisy annotation: 

 the portion of the clean annotations to be replaced, 

 the sampling distribution 𝑝(𝑙|𝑐) over all labels from which to draw the replacements. 

Here, the variable c represents some context information that could either be globally static or 

dynamic, i.e., potentially differ from instance to instance. In the simplest case, the distribution is 

independent of any context, i.e., 𝑝(𝑙|𝑐) = 𝑝(𝑙). This is the case we will focus on at first. 

A natural candidate for the sampling distribution p would be the distribution q of labels found in 

the clean annotations, estimated through their relative frequencies. While other candidates are 

conceivable, for instance a uniform distribution over all labels, there might be some merit in 

keeping the distribution of noisy labels identical to that of clean data, or at least close to that, since 

too large discrepancies will likely result in a learned model that performs poorly on the test dataset. 

Keeping the label distribution unchanged implies that the individual label counts in the noisy 

annotations must remain the same as in the clean annotations. Any method that achieves this is 

akin to randomly shuffling a subset of the clean annotations. That is, (instead of using sampling) 

create a permutation 𝜎 of a random subset 𝐼 = {𝑖1, . . . , 𝑖𝑘} of size k of the index set {1, . . . , |𝐶|}: 

𝜎 = ( 

i1 i2 ... ik 

) 
𝜎(𝑖1) 𝜎(𝑖2) ... 𝜎(𝑖𝑘) 

Then, define the noisy annotations N as: 

𝑁 = (𝐶 ∖ {(𝑥𝑖1
, 𝑦𝑖1

), . . . , (𝑥𝑖1
, 𝑦𝑖𝑘

)}) ∪ {(𝑥𝑖1
, 𝑦𝜎(𝑖1)), . . . , (𝑥𝑖1

, 𝑦𝜎(𝑖𝑘))} 

But, how much noise is actually introduced by shuffling the annotation labels? We define the noise 

level of N with respect to C as: 

noiselevel =
|{𝑖 ∨ 𝑦𝑖 ≠ 𝑧𝑖}|

|𝐶|
 

The amount of noise does not only depend on the choice of k, it is also influenced by the number 

of ij for which σ(ij) ≠ ij, i.e., the amount of data points that actually receive a label under sigma that 

is different from their original label. In drastically skewed distributions, where a single label 
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dominates all others in frequency — as is the case for named entity annotations with the “O” label, 

since most words in ordinary texts are not named entities — the maximum noise level that is 

possible through shuffling is min (1,2 ⋅ (1 − 𝑓(𝑙))), where l is the dominant label and 𝑓(𝑙) its 

relative frequency in the clean dataset. In our Verbmobil data, the relative frequency of the “O” 

label is 82.06%, and hence the maximum noise level attainable without changing the label 

distribution is 17.04%. 

If higher noise levels are desired, we need to take different label distributions in the resulting noisy 

training data into account. Coming back to the original sampling proposal, we can employ the 

following procedure to create noisy annotations by sampling. 

Let 𝐼 = {𝑖1, . . . , 𝑖𝑘} be a k-subset of {1, . . . , |𝐶|}, chosen at random with uniform probability, like 

before. Then, define the noisy annotation N as: 

𝑁 = (𝐶 ∖ {(𝑥𝑖1
, 𝑦𝑖1

), . . . , (𝑥𝑖𝑘
, 𝑦𝑖𝑘

)}) ∪ {(𝑥𝑖𝑗
, 𝑙𝑗) ∨ 1 ≤ 𝑗 ≤ 𝑘, 𝑙𝑗 ∼ 𝑝} 

Or, expressed more algorithmically in the Python programming language, using its NumPy 

package: 

def sampling_noise(C, L, p, k) 

 # define the index set {0, ..., |C|-1} 

 C_indices = numpy.arange(len(C)) 

 

 # choose a random k-subset of the index set 

 I = numpy.random.choice(C_indices, k, False) 

 

 # create a new label for each data point given by I 

 for i in I: 

         noisy_label = numpy.random.choice(L, 1, False, p) 

         C[i] = (C[i][0], noisy_label) 

 

The parameter k controls the maximum amount of noise in N, with 
𝑘

|𝐶|
 being an upper bound for 

N's noise level which can be expected to be: 

𝐸(noiselevel) =
𝑘⋅∑ 𝑞𝑙∈𝐿 (𝑙)⋅(1−𝑝(𝑙))

|𝐶|
  

For the case where 𝑝 = 𝑞, the expected noise level is maximised if both distributions give equal 

probability to all labels (uniform distribution), in which case the expected noise level is 
𝑘

|𝐶|
−

𝑘

|𝐿||𝐶|
. 

It is not difficult to achieve an actual noise level of 
𝑘

|𝐶|
 by altering the sampling procedure above 

slightly so as to guarantee each newly selected label to be different from the clean label. For that, 

we insert two additional lines into the for-loop of the above algorithm: 

        # create a new label for each data point given by I 

        for i in I: 

            noisy_label = numpy.choice(L, 1, False, p) 

            # make sure the new label is different from the clean one 
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            while noisy_label == C[i][1] 

                noisy_label = numpy.choice(L, 1, False, p) 

            C[i] = (C[i][0], noisy_label) 

 

Of course, this means that the noisy label is no longer selected according to p. Rather, the 

replacements for each label 𝑙 are based on a distinct distribution 𝑝𝑙 given as 

𝑝𝑙(𝑥) = {

0, if 𝑥 = 𝑙

𝑝
(𝑥)

∑ 𝑝𝑦∈𝐿∖{𝑙}

(𝑦), otherwise
 

In return, the resulting noise level is now exactly 
𝑘

|𝐶|
. 

Generating noisy labels without any context information results in annotations that are very unlike 

the noise introduced by human annotation error. We, thus, also consider a slightly more informed 

version of the sampling approach that takes two types of context information into account: 

 the part-of-speech of the word to be relabeled, 

 the label of the preceding word. 

The rationale for the first point is that not all parts-of-speech are equally likely to co-occur with 

named entities. For instance, nouns and compounds have a much higher probability of 

constituting a location, organisation, or person name than, e.g., prepositions or conjunctions do. 

Similarly, "I-" labels in the BIO scheme can only follow a "B-" label or another "I-" label of the same 

type. Therefore, to generate more convincing noisy labels, we can use the conditional probability 

distribution 𝑝(𝑙 ∨ 𝑝𝑜𝑠; 𝑝𝑟𝑒𝑣) as the sampling distribution, where pos refers to the part-of-speech 

of the word to relabel and prev refers to the label of the preceding word. Again, the distribution 

can be estimated from the frequencies of occurrence in the clean data. Since not all possible 

combinations of label, part-of-speech, and previous label are found sufficiently often or are 

attested at all in our dataset, we first use a simple Laplace smoothing to compute the conditional 

probability in our experiments: 

𝑝(𝑙 ∨ 𝑝𝑜𝑠; 𝑝𝑟𝑒𝑣) =
𝑓(𝑙, 𝑝𝑜𝑠, 𝑝𝑟𝑒𝑣) + 1

𝑓(𝑝𝑜𝑠, 𝑝𝑟𝑒𝑣) + |𝐿|
. 

However, this alone would assign equal probability to all labels for all cases where a specific 

combination of part-of-speech and previous label do not occur at all in the clean data, i.e., where 

𝑓(𝑝𝑜𝑠; 𝑝𝑟𝑒𝑣) = 0. Instead, inspired by Katz’s backoff model, we resort to 𝑝(𝑙) in such cases. Using 

this sampling distribution alone does not prevent unlikely parts-of-speech to be erroneously 

labelled as a named entity, nor does it always produce consistent BIO-labels. But that is the nature 

of a probabilistic approach, and it is also not unexpected that noisy annotations do not behave 

completely like clean annotations. Yet, we also experimented with an alternative way to generate 

noisy labels that we introduce now. 

 

Knowledge-based noisy annotations 

Among the main advantages of the sampling method to creating noise are its flexibility and ease 

of implementation. However, it requires clean labels to estimate the different sampling 

distributions and for all situations where only parts of the annotations should be based on noise 
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(i.e., 𝑘 < |𝐶|. In real-world situations, clean labels will usually not be available for the full training 

set, or else there would be no need for creating a weakly-supervised learning model in the first 

place. However, it is conceivable that a certain portion of the dataset has been annotated 

manually. This annotation could then be used to estimate the sampling distribution with which the 

remaining data could be annotated. The manually annotated portion needs to be sufficiently large 

to estimate a reliable sampling distribution. 

As an alternative, it is possible to leverage external, domain-dependent knowledge to design 

automatic procedures that provide noisy labels [13]. For instance, in the case of our Verbmobil 

data, the categories LOC and ORG could be labelled automatically by referring to large databases 

of locations and organisation names. Similarly, lists of names can be used as the basis for an 

automatic procedure that identifies PER instances in text. For DATE and TIME, using such a 

gazetteer seems to be less useful; however, occurrences of such expressions in text can be found 

by specifically designed scripting rules. 

This is exactly the approach we followed for the “knowledge-based annotations”. We refer to such 

automatic procedures to annotate a dataset (imperfectly) as weak labelers. Studying how well the 

resulting annotations are suited for subsequent weakly supervised learning is especially 

interesting because it is a realistic methodology that is available to commercial stakeholders at a 

comparatively low cost. 

Following [13], candidate lists were extracted from Wikipedia for PER, LOC, and ORG. In order 

to achieve higher recall on PER, its list was extended with lists of the most popular first and last 

names taken from the web. The weak labelers for each of these three categories then identify the 

longest subsequences in the data and annotate each with the respective label.  

One important aspect to pay attention to in this process is how to handle cases where more than 

one weak labeler matches the same words. This happens for words that are part of more than 

one list, for instance, “Austin” is both a name and a location and would thus appear in the lists for 

PER and LOC. Dembowski et al. suggest to not label such instances at all, so as not to risk 

creating false positive annotations [13]. Here, however, we follow Hedderich and Klakow who 

instead employ simple heuristics for conflict resolution [2]. 

Included in the weakly supervised learning library is a tool for weakly labeling data based on 

matching rules (see Section 4.2). Using this tool, we defined rules to identify expressions of DATE 

and TIME in the training data. A matching subsequence is labelled only if it has not already been 

annotated with a different label before. Words that do not get assigned a label by any of the weak 

labelers, receive the “O” label. 

3.2.3 Experiments and evaluation 

As discussed above, we have a number of different noisy annotations available for the training 

set as well as clean annotations for the same training data and also for a development and a test 

set. The training data consists of 177,375 words but since we want to simulate the situation in 

which only a small amount of labelled data is available, we only use a randomly chosen 1% of 

these. 
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As for noisy data, we compare two variations of the sampling methods described above: sampling 

solely from the label distribution as inferred from the clean annotations, without any other context 

information; and sampling from distributions conditioned on the previous label and the part-of-

speech of the current label, also inferred from the clean annotations. The part-of-speech 

information for each word in the training set is automatically generated using the flair NLP 

framework10 with its “fast-pos” model. 

In addition, we experiment with noisy annotations created through a combination of gazetteers 

for the PER, LOC, and ORG labels and matching rules for DATE and TIME. The different types 

of training sets to our disposal are listed in Table 13. 

 

Table 13: Overview of the clean and noisy training data used in our experiments. All data are 

derived from the Verbmobil corpus. 

Name Description Noise level 

train_clean 1,773 manually annotated words n.a. 

train_noisy_sampled_no_context 
train_clean + noisy annotations generated 
by sampling from an inferred distribution 

p(label) 
28.15% 

train_noisy_sampled_with_context 
train_clean + noisy annotations generated 

by sampling from inferred distributions 
p(label|pos;prev) 

31.26% 

train_noisy_kb+rules 
train_clean + noisy annotations based on 

external knowledge 
14.90% 

 

Although these datasets were created without any machine learning algorithms, we can compare 

the three noisy datasets to the clean one in terms of precision, recall and f-score, as is common 

practice with classifier outputs (see Table 14). Similarly, the noise level is equal to 1 − accuracy, 

a measure also known as error rate in the context of measuring classification quality. 

As Table 14 illustrates, the knowledge-based method “out-performs” the other two noisy datasets 

in all measures across all labels. 

The simple neural network architecture used in all of our experiments is shown below. The base 

model, which operates only on the clean portion of our data, consists of a BiLSTM with state-size 

300 for input encoding, followed by a linear layer of size 100 and ReLU activation, followed by a 

second linear layer. We use pre-computed fastText embeddings [14] to encode the words in our 

dataset. The noise model consists of the same base model with an additional noise layer on top 

as described above (see Figure 8). 

 

 

                                                
10 https://github.com/flairNLP/flair 
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Table 14: Quality of the knowledge-based noisy annotations when compared with the clean 

annotations, both by individual label and totally. 

Label 

Precision Recall F1-score 

SNC SWC KBR SNC SWC KBR SNC SWC KBR 

B-PER 0.00 0.01 0.16 0.00 0.03 0.50 0.00 0.01 0.24 

I-PER 0.00 0.00 0.13 0.00 0.01 0.02 0.00 0.00 0.03 

B-ORG 0.00 0.00 0.04 0.00 0.01 0.01 0.00 0.00 0.02 

I-ORG 0.00 0.00 0.20 0.00 0.02 0.01 0.00 0.00 0.02 

B-LOC 0.00 0.2 0.62 0.00 0.11 0.74 0.00 0.04 0.69 

I-LOC 0.00 0.0 1.00 0.00 0.02 0.45 0.00 0.00 0.09 

B-DATE 0.04 0.25 0.43 0.03 0.28 0.39 0.04 0.27 0.41 

I-DATE 0.04 0.10 0.43 0.03 0.06 0.29 0.03 0.08 0.35 

B-TIME 0.03 0.20 0.39 0.03 0.27 0.33 0.03 0.23 0.36 

I-TIME 0.04 0.20 0.52 0.03 0.15 0.38 0.03 0.17 0.44 

O 0.83 0.89 0.92 0.86 0.80 0.95 0.84 0.84 0.94 

Macro Avg. 0.09 0.15 0.44 0.09 0.16 0.33 0.09 0.15 0.32 

Micro Avg. 0.72 0.70 0.85 0.72 0.69 0.85 0.72 0.70 0.85 

 

On the CoNLL corpus, a standard dataset for NER based on newswire articles, the base model 

achieves an F-score of around 85%11. 

For the Verbmobil corpus which all of our experiments are based on we first compute a baseline 

by only training the base model. We use 1,773 (= 1%) of samples with clean labels, and no noisy 

annotations at all. The model is trained for 100 epochs and then evaluated on the test set, 

reaching an F-score of 30.03% (averaged over three runs). Here and in the following, the reported 

F-scores exclude the majority class “O” as is standard practice in Named Entity Recognition 

research. The relatively low result of 30.03% demonstrates the importance of having enough 

training data: while manually annotating 1,773 data points could already prove on the border of 

being too costly for an SME, the classification quality that can be achieved with such a small 

dataset alone is insufficient. 

                                                
11 We follow the tradition in NER of reporting F-scores computed over the non-”O” labels. 
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Figure 8: Base and noise model in our weakly supervised NER architecture. 

 

Since we have three different methods available for creating more annotations automatically, we 

could produce additional baseline conditions by simply adding the noisy annotations to the 1,773 

clean annotations and train the base model (without the noise layer) that way. Unfortunately, for 

both noisy annotations based on sampling, the F-score drops dramatically in this approach to 

around 2%. In contrast, the noisy annotations generated with gazetteers and rules lead to an F-

score of 33.07%, which is in fact slightly better than the initial baseline. This set of noisy 

annotations contains in fact the smallest amount of noise, yet the drastic performance difference 

when using sampling noise is not predicted by the differences in noise levels. Instead, the 

outcome of these baseline experiments hints at a fundamental shortcoming of noise generated 

by sampling in structural terms, at least when only a small set of clean data can be used for 

estimating the sampling distributions. 

For the actual experiments, we then train our classifier with the additional noise layer in the 

manner described above. As for the baselines, we train each experimental condition for 100 

epochs. Table 15 summarises the results for all three noisy datasets and contrasts them with the 

strongest of our baselines. As we can see, the overly simple sampling method without context 

fails to even meet the baseline results. However, both the contextualised sampling method as 

well as the knowledge-based weak labelers lead to much better results. 

Although the relative improvements over the baseline are impressive, the recognition rates are 

still quite low in absolute terms even when keeping in mind that the majority class “O” is not 

included in these numbers. We thus started exploring alternative methods, one of which we 

explain in the following section. 
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Table 15: Results for the weakly supervised NER experiments. 

Training data Precision Recall F-score 

Baseline (base model only) 35.75 30.77 33.07 

train_noisy_sampled_no_context 33.19 29.41 31.15 

train_noisy_sampled_with_context 42.29 43.31 42.77 

train_noisy_kb+rules 36.82 37.32 37.04 

 

3.2.4 Cross-domain Named Entity Recognition 

Is weak supervision the only way to relieve developers of voice-based applications from the cost 

and effort of annotating large amounts of data in high quality? Or are there alternative options that 

could possibly even be combined with weakly supervised methods to boost the classification rate 

further? The general idea to complement the collected data with additional information from 

external knowledge bases has motivated one of the noisy annotation methods above. While the 

particular approach did not lead to the best classification results, it did outperform the baseline 

substantially.  

Another possible approach to leveraging external information is the transfer of learned knowledge 

from a different domain for which a large amount of data already is available to the low-resource 

target domain in a process called cross-domain NER. For instance, the model proposed in [15] 

tries to utilise cross-domain language model training to improve cross-domain NER. The core 

idea is transferring NER knowledge from the source domain to the target domain by contrasting 

large raw data in both domains through cross-domain language model training. A more detailed 

explanation follows. 

Given an input sentence, word representations are first calculated through a shared embedding 

layer. Then a set of task- and domain-specific BiLSTM parameters is calculated through a 

parameter generation network. Finally, respective output layers are used for different tasks and 

domains. We have started initial experiments with applying this technique to the COMPRISE task 

at hand, therefore we quickly summarise the original method, which we use as a baseline, and 

introduce our own extensions so far. 

To get the embeddings, given an input 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] from a source-domain training set or 

target-domain, each word 𝑥𝑖 is represented as the concatenation of its word embedding and the 

output of a character level CNN.  

Then a bi-directional LSTM layer is applied to the embedding vector𝑣 = [𝑣1, 𝑣2, . . . , 𝑣𝑛]. To transfer 

knowledge across domains and tasks, a parameter generator network is introduced, by 

decomposing the parameters θ of the NER or LM task on the source or target text domain into 

the combination  𝜃 = 𝑓(𝑊, 𝐼𝑑 , 𝐼𝑡) of a set of meta parameters W, a task embedding vector 𝐼𝑡 (𝑡 ∈

{𝑛𝑒𝑟, 𝑙𝑚}) and a domain embedding vector 𝐼𝑑 (𝑑 ∈ {𝑠𝑟𝑐, 𝑡𝑔𝑡}), so that domain and task-correlations 

can be learned through similarities between the respective domain and task embedding vectors. 
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Furthermore, standard CRFs are used as output layers for NER. The network is trained by 

optimising the NER and LM objectives: 

𝐿𝑛𝑒𝑟 = −
1

|𝐷𝑛𝑒𝑟|
∑ 𝑙𝑜𝑔

𝑁

𝑛=1

(𝑝(𝑦𝑛 ∨ 𝑥𝑛)) 

 

𝐿𝑙𝑚 = −
1

2|𝐷𝑙𝑚|
∑ ∑ 𝑙𝑜𝑔 (𝑝𝑓(𝑥𝑡+1

𝑛 |𝑥1:𝑡
𝑛 )) + 𝑙𝑜𝑔 (𝑝𝑏(𝑥𝑡−1

𝑛 |𝑥𝑡:𝑇
𝑛 ))

𝑇

𝑡=1

𝑁

𝑛=1

 

 

where 𝐷𝑛𝑒𝑟 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . } is the training data for NER and 𝐷𝑙𝑚 = {(𝑥1
0, 𝑥2

0, . . . , 𝑥𝑇
0), . . . } is 

the language modeling training data. 

For now, we take the CoNLL-2003 English NER data as the source domain data, as this is the 

dataset used in the original publication. For the target domain, a science and technology dataset 

is collected and labelled in [15]. One of the next steps will be to move to Verbmobil data for 

compatibility and possible combination with our previous experiments. CoNLL-2003 contains four 

types of entities: PER (person), LOC (location), ORG (organisation) and MISC (miscellaneous). 

For the science and technology dataset, 620 articles from CBS SciTech News were collected and 

annotated following the CoNLL-2003 standard. Applying the aforementioned method in this 

setting leads to an F-score of 73.59%.  

We extend this base approach with two contributions. First, we make use of a masked language 

model, and second we incorporate latent representations of the labels themselves. While these 

experiments are preliminary, we are able to achieve improvements over the model described 

above which we consider our baseline. Both contributions are explained now. 

Pretrained models like BERT [16] have recently achieved state-of-the-art scores in the NER task. 

As another competitive approach, we employ the pretrained BERT language model adapted for 

the NER task and compare it with the baseline model discussed above. Following [16], to do so, 

we apply a linear classifier on top of BERT, fine tune it on the source domain and finally test it on 

the target domain.  

To make knowledge transformation from source domain to target domain even more efficient, we 

add a latent representation of each label to the inputs of the BERT model. Therefore, we also 

consider another model, which is obtained by augmenting the BERT model with the predefined 

embeddings for each label. The idea behind this approach is that the model learns the concept of 

each entity and therefore knowledge transfer is more efficient. An overview of the model is 

depicted in Figure 9. 

A natural question is how to get the representation of labels in the latent space. One simple 

solution is to take the average of embeddings of the tokens corresponding to each label and use 

the resulting vector as the embedding for that category. To reflect the statistics in the data, we 

also weight the contribution of each word by its frequency in the dataset. We then compute the 

most similar words to these averaged embeddings to see how they are distributed in the latent 

space. The results for the CoNLL-2003 dataset are depicted in Table 16. 
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Figure 9: Adding label embeddings to the BERT model. 

 

Table 16: The seven most similar words to the label embedding for the four CoNLL labels. 

LOC ORG PER MISC 

England MLB James American 

Germany NFL Scott German 

Europe Government Thomas French 

France NBC John Russian 

Australia Army Smith British 

USA Yankees Bennett Chinese 

  

We compare the F-score of all approaches in Table 17. Empirically, we found that using only the 

embeddings for “LOC”, “PER” and “ORG” results in a higher performance. This can be understood 

from the fact that tokens with the “MISC” label have more diversity and therefore finding a common 

representation between source and target domains is more difficult. 

As it is evident from Table 17, the BERT model outperforms the method proposed in [15] and 

adding the label embeddings to BERT further improves the performance. These F-scores are 

considerably higher than in our weakly supervised learning experiments, but it should be kept in 

mind that the settings of both experiments differ in multiple ways. The most crucial next step for 

our research will thus be to unify the two approaches to allow for better comparison.  
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Table 17: F-scores of the two experiments compared to the baseline. 

Model F-score 

Baseline 73.59% 

BERT 74.0% 

BERT + label embeddings 74.5% 

 

4. Software library 

4.1 Library for weakly supervised learning of Speech-to-Text12 

The initial version of the weakly supervised library for STT provides two main components which 

represent the two approaches presented above, namely:  

1. STT Error Detection driven Training (Err2Unk)  

2. Weakly Supervised Training based on Dialogue States 

These library components focus on obtaining reliable transcriptions of un-transcribed speech data 

which can be used for training both STT AMs and LMs. The AMs can be of any type, although we 

chose the state-of-the-art Chain models in our examples. Statistical n-gram LMs are chosen over 

other possible LMs to support limited data scenarios. 

Readers interested in the high-level design and experimental evaluation of these two components 

are directed to Section 2.1 and Section 3.1, respectively. This section provides details on typical 

usage of these two components. 

4.1.1 Prerequisites 

− This library will re-use binaries and scripts from the Kaldi toolkit. So, you should have Kaldi 

pre-installed on your system. 

−  Speech datasets for training STT models, including: 

 (small amount of) transcribed speech data. As demonstrated in Section 3.1, it 

could be an existing read speech corpus or a few hours of domain/application 

specific speech corpus. 

 (more) un-transcribed speech data. 

 a development set containing application specific transcribed speech data 

− Err2Unk based training requires: 

 the Keras Python library to train neural network models for STT error detection. 

 the kenlm Python module to extract language model related features for error 

detection. 

                                                
12 https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning 

https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning


GA Nº: 825081 – COMPRISE – D4.2 Initial weakly supervised learning library  

36 

− Dialogue state based training requires: 

 the SRILM toolkit. If you have installed Kaldi, you can install the SRILM toolkit with 

the tools/extras/install_srilm.sh script in your Kaldi installation. 

 a speech dataset from a human-machine dialogue system where a dialogue state 

corresponding to each human utterance is already available, for example the Let’s 

Go dataset. One could also use human-human conversations or any other speech 

dataset with any kind of weak (but relevant) utterance level labels. 

4.1.2 Setup 

− Ensure that you have a working Kaldi installation. 

− Modify the softlinks steps and utils in this directory to point to egs/wsj/s5/steps/ and 

egs/wsj/s5/utils/, respectively, in your Kaldi installation. 

− Modify the path of KALDI_ROOT and modify (or remove) the path to kaldi_lm, SRILM and 

sox tools in path.sh 

− Modify cmd.sh if you are using a different execution queue for Kaldi. 

4.1.3 Typical usage steps 

4.1.3.1 Err2Unk based training 

Err2Unk based semi-supervised training of STT models will typically involve following steps. 

 

Step 1. Train seed STT models 

− Supervised training data with reliable speech-transcript pairs are used to train the seed 

AM and LM. Note that this step can be skipped if you already have pre-trained AM and 

LM. 

− A sample Kaldi recipe to train the seed AM and LM on a subset of the Let’s Go dataset is 

made available in the egs/ directory. 

  

Step 2. Prepare for STT Error Detection 

− The seed AM and LM are used to decode the unsupervised speech and development set 

into STT lattices. A sample script is available in egs/local/ if you are relying on the sample 

recipe from Step 1. 

− Obtain STT confusion networks from the lattices decoded on the unsupervised speech 

and development set. The COMPRISE library assumes confusion networks are in Kaldi 

sausage format. Assuming your lattices are generated by Kaldi (as lat.*.gz), you can use 

our script to generate STT confusion networks as follows: 

bash local/err2unk/getSaus.sh lattice_dir graph_dir lm_wt 

graph_dir is the directory used by the Kaldi decoder, and lm_wt is the LM weight which 

gives the best development set WER. Note that STT confusion networks, aka sausages, 

are generated in the lattice_dir/sau/ directory, referred to as saus_dir in the next steps. 
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Step 3. Train the STT Error Detector 

− Align the development set confusion networks to the corresponding reference 

transcriptions 

bash local/err2unk/sausAlign.sh saus_dir graph_dir ref_text  

‘ref_text’ is the reference transcription file in Kaldi format. The output is saved to a text file 

saus_dir/saus_bin-best_with-heps.hyp.align which is referred to as saus_ref_align below. 

 

− Extract relevant features and labels from the development set confusion networks 

python local/err2unk/errdet/saus_feats_for_train.py saus_dir saus_ref_align lm_arpa 

graph_dir dev_saus_feats_n_labs 

lm_arpa is the LM in ARPA format, and dev_saus_feats_n_labs is the output file 

containing features and labels extracted from the confusion networks, which will be used 

in the next command. Note that the error detector is trained on the application-specific 

development set. 

 

− Train a Bi-directional Long Short Term Memory (BLSTM) based error tagger 

python local/err2unk/errdet/train_3c_error_tagger_on_dev.py dev_saus_feats_n_labs 

err_model_dir 

err_model_dir stores the resulting error tagger model. Feedforward neural network based 

error detectors can also be tried with local/err2unk/errdet/train_3c_error_mlp_on_dev.py. 

              

Step 4. Get unsupervised speech transcripts 

− Extract relevant features from the unsupervised speech confusion networks, obtained in 

Step 2. 

python local/err2unk/errdet/saus_feats_for_predict.py saus_dir lm_arpa graph_dir 

unsup_saus_feats 

unsup_saus_feats is the output file containing features extracted from the confusion 

networks, which will be used in the next command. 

 

− Tag STT errors on the unsupervised speech confusion networks 

python local/err2unk/errdet/tag_with_3c_tagger.py err_model_dir unsup_saus_feats 

unsup_error_preds 

unsup_error_preds is a text file containing the error predictions. 

 

− Get Err2Unk unsupervised speech transcripts 

bash local/err2unk/getErr2UnkTranscripts.sh saus_dir graph_dir unsup_error_preds > 

unsup_text 

unsup_text are the output transcriptions in Kaldi format. 
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Step 5. Retrain STT models 

− Prepare a new data directory, combining supervised and unsupervised data, for training 

new models 

bash local/err2unk/prepareNewDataDir.sh unsup_text old_sup_data_dir 

old_unsup_data_dir new_data_dir 

old_sup_data_dir contains wav.scp and utt2spk used for training the seed AM in Step 1, 

old_unsup_data_dir contains wav.scp and utt2spk used for decoding unsupervised 

speech in Step 2, and new_data_dir will contain the combined data directory for training 

new models. Note that this script can be extended to combine feat.scp and cmvn.scp to 

avoid repeating feature extraction. 

 

− Train a new AM and LM on the new combined data directory using a Kaldi recipe similar 

to Step 1. 

4.1.3.2 Dialogue state based training 

Dialogue state based weakly supervised training of STT models will typically go through the 

following steps. 

  

Step 1. Train seed STT models 

− Supervised training data with reliable speech-transcript pairs are used to train the seed 

AM and LM. This step can be skipped if you already have pre-trained AM and LM. 

− A sample Kaldi recipe to train the seed AM and LM on a subset of the Let’s Go dataset is 

made available in the egs/ directory. 

  

Step 2. Decode unsupervised speech to lattices 

− The seed AM and LM are used to decode the unsupervised speech into Kaldi STT lattices 

(lat.*.gz). A sample script in available in egs/ if you are relying on the sample recipe from 

Step 1. 

  

Step 3. Train dialogue state LMs 

− Train dialogue state specific LMs 

bash local/dsLMs/trainDialogStateLMs.sh old_lang_test_dir utt_dialog_state_csv 

ds_lm_dir 

old_lang_test_dir was created during training of seed models (Step 1) and should contain 

files words.txt and G.fst, utt_dialog_state_csv is the training set 3-column CSV file of form 

utt_id,transcript,dialog_state, and ds_lm_dir will contain the dialogue state specific LMs. 

This script uses the unk symbol and a count threshold minDsCnt on the minimum number 

of utterances in a dialogue state. Dialogue states with fewer utterances than this count are 

ignored and these utterances will resort to the seed LM (G.fst) in old_lang_test_dir. 

 

− Train interpolated dialogue state specific LMs 
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bash local/dsLMs/trainInterpolatedDialogStateLMs.sh ds_lm_dir old_lm_arpa 

int_ds_lm_dir 

old_lm_arpa is the ARPA LM corresponding to the seed LM, and int_ds_lm_dir contains 

the interpolated dialogue state specific LMs. Interpolated dialogue state specific LMs 

perform better than the dialogue state specific LMs created by the previous command. But 

the previous command is essential to obtain ds_lm_dir. 

 

Step 4. Rescore unsupervised lattices 

− Reorganise the old lattice archives into dialogue state specific lattice archives 

bash local/dsLMs/reorgLattices.sh data_dir utt_dialog_state_csv old_lat_dir int_ds_lm_dir 

new_lat_dir 

data_dir contains the wav.scp file, utt_dialog_state_csv is a 3-column CSV file of form 

utterance_id,transcript,dialog_state (without any transcript for unsupervised speech), 

old_lat_dir was created after decoding with seed models and should contain Kaldi format 

lattice archives (lat.*.gz), int_ds_lm_dir was created in Step 3, and new_lat_dir will contain 

the reorganised lattice archives ready for rescoring with Kaldi. 

 

− Rescore unsupervised lattices with interpolated dialogue state specific LMs 

bash local/dsLMs/rescoreDsLattices.sh old_lang_test_dir int_ds_lm_dir data_dir 

new_lat_dir rescored_lat_dir 

old_lang_test_dir was created during training of seed models (Step 1) and should contain 

files words.txt and G.fst, int_ds_lm_dir was created in Step 3, data_dir should contain 

reference transcriptions in Kaldi format if you want to computer the WER, new_lat_dir 

contains the reorganised lattice archives ready for rescoring, and rescored_lat_dir will 

contain the dialogue state LM rescored lattice archives 

 

− Get best path transcripts on unsupervised speech 

bash local/dsLMs/getBestPathTranscripts.sh rescored_lat_dir words_file lm_wt 

word_ins_penalty unsup_text 

words_file is the words.txt file used by the seed models (e.g., in ‘old_lang_test_dir’), lm_wt 

is the LM weight which gives the best development set WER, word_ins_penalty is 0.0, 0.5 

or 1.0 (whichever gives the best development set WER), and unsup_text contains the best 

path transcripts on unsupervised speech. 

              

Step 5. Retrain STT models 

− Prepare unsupervised data for training new models 

bash local/err2unk/prepareNewUnsupDataDir.sh unsup_text old_sup_data_dir 

old_unsup_data_dir new_data_dir 
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old_sup_data_dir contains wav.scp and utt2spk used for training the seed AM in Step 1, 

old_unsup_data_dir contains wav.scp and utt2spk used for decoding unsupervised 

speech in Step 2, and new_data_dir will contain the new combined data directory for 

training new models. This script can be extended to combine feat.scp and cmvn.scp to 

avoid repeating feature extraction. 

 

− Train new AM and LM on the new combined data directory using a Kaldi recipe similar to 

Step 1. 

4.2 Library for weakly supervised learning of text processing13 

The text processing part of the library consists of the actual weakly supervised learning 

implementation as well as a number of auxiliary tools. This section describes the necessary steps 

to install and use them. 

4.2.1 Prerequisites 

All tools in this part of the library are implemented using the Python programming language, 

version 3.7. Four external packages are required: 

− NumPy 

− PyTorch 

− fastText 

− Flair 

These can be installed in a number of ways, using standard Python package installation methods, 

such as, e.g. “pip”: 

− pip install numpy 

− pip install torch 

− pip install fasttext 

− pip install flair 

The training of the machine learning models in this part of the library can be run on the CPU, 

however, it is recommended to use PyTorch together with the NVIDIA CUDA14 framework to 

leverage GPU-based training.  

4.2.2 Configuration 

Relevant settings for training a weakly supervised NER model are stored in configuration files in 

JSON15 format, consisting of a flat JSON object with the following entries: 

 NAME - The name of the experiment — must match the filename of the configuration file. 

                                                
13 https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning 
14 https://developer.nvidia.com/cuda-zone 
15 https://www.json.org/ 

https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning
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 PATH_TRAIN_CLEAN - The path to the file containing the manually annotated training 
data. 

 PATH_TRAIN_NOISY - The path to the file containing the automatically generated 
training data. 

 PATH_DEV - The path to the file containing the manually annotated validation set data. 

 PATH_TEST - The path to the file containing the manually annotated test set data. 

 DATA_SEPARATOR - The (whitespace) string used to separate word, true label, 
predicted label in the output format for the CoNLL evaluation script. 

 WORD_EMBEDDING - The path to fastText word embedding file “cc.en.300.bin”. 

 LABEL_FORMAT - Either “io” or “bio”, according to which labeling convention was used 
to annotate the training data. 

 CONTEXT_LENGTH - The number of words to the left and the right of the word to be 
labelled that make up the context window. 

 LSTM_SIZE - The output size of the BiLSTM. 

 DENSE_SIZE - The output size of the first Dense layer. 

 DENSE_ACTIVATION - The name of the activation function for the first Dense layer 
(“relu” or “sigmoid”) 

 BATCH_SIZE - The number of samples per batch. 

 EPOCHS - The number of epochs to train for. 

 USE_NOISY - must be True. 

 USE_IDENTITY_MATRIX - True, if the noise matrix should be initialised as the identity 
matrix instead of the way described above. Useful for debugging. 

 SAMPLE_SEED - An integer used to initialise NumPy’s random number generator. 

 SAMPLE_PCT_CLEAN - A value between 0 and 1, specifying the percentage of the full 
clean dataset to be used (e.g., 0.01) 

 SAMPLE_PCT_NOISY - A value between 0 and 1, specifying the percentage of the full 
noisy dataset to be used (e.g., 1.00) 

 NUM_WORKERS - A positive integer will turn on multi-process data loading with the 
specified number of loader worker processes. 

 REPORT_INTERVAL - For a positive integer i, logging information is printed out every i-
th epoch. 

4.2.3 Data format 

Our implementation uses fastText word embeddings for all words in all datasets. Depending on 

the size of the datasets, generating these embeddings can take quite a long time. Therefore, we 

use Python’s pickle package which allows us to export objects to files, and to recreate them at a 

later point by re-importing them. All datasets are thus encoded as Python dictionaries with three 

entries: 

1. instances - a list of data points, encoded using class Instance. 

2. embedding_dim - the size of the word embedding vectors. This is currently 300. 

3. remove_label_prefix - a boolean value indicating whether or not the “B-” and “I-” prefixes 

of the NER labels should be removed. This value is currently hard-coded to be True. 
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As it can be cumbersome to create these pickle files, we provide a command line tool that can 

convert annotated data in text format to the correct pickle format expected by the NER software. 

The format expected by that tool is tab separated values (TSV format) where each line of the file 

contains a word, followed by a TAB character, followed by its label. Sentence boundaries are 

marked by empty lines. 

4.2.4. Running the code 

The main script for running an experiment is “ner.py” which can be invoked as follows: 

    python3 ner.py [<options>] <settings> 

<settings> refers to a JSON configuration file that contains all the relevant information for the 

experiment (see Section 4.2.2). In addition, a number of command line options can be provided. 

Most of these, except for --config-dir and -h override the respective values from the JSON 

configuration file, allowing for quick setup changes without the need to edit the latter. The available 

options are: 

− -h – Abort normal operation and print a help screen that explains the options for the script. 

− --config-dir=<PATH> - Specifies the path to the directory containing the JSON 
configuration file. 

− --epochs=<EPOCHS> - The number of epochs to train for. 

− --sample-pct-clean=<float> - A value between 0 and 1, specifying the percentage of the 
full clean dataset to be used (e.g., 0.01) 

− --sample-pct-noisy=<float> - A value between 0 and 1, specifying the percentage of the 
full noisy dataset to be used (e.g., 1.00) 

− --use-identity-matrix=<bool> - True, if the noise matrix should be initialised as the 
identity matrix instead of the way described above. Useful for debugging. 

The script will then proceed to construct the neural networks, load the data, and start the training 

process. The progress of the training is logged to the terminal as given by the 

REPORT_INTERVAL setting in the configuration file. At the end of the training, the resulting 

model is automatically evaluated against the test set in terms of accuracy, precision, recall and 

F-score overall as well as for each individual label. 

4.2.5 Auxiliary tools 

Besides the main code, the initial weakly supervised learning library also comes with a number of 

handy tools, mostly for working with TSV files (see Section 4.2.3): 

− Io2bio.py / bio2io.py 

 USAGE: python3 io2bio.py <infile.tsv> <outfile.tsv> 
USAGE: python3 bio2io.py <infile.tsv> <outfile.tsv> 
 <infile.tsv> - The input file in tab-separated format, annotated according to the 

IO/BIO scheme. 
 <outfile.tsv> - The output file in tab-separated format, annotated according to the 

BIO/IO scheme. 
 The scripts convert the annotation scheme used in the input file from the IO scheme 
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to the BIO scheme, or vice versa. Note that the conversion BIO -> IO drops information 
as the boundaries between adjacent annotation of the same type get lost. Similarly, 
the conversion IO -> BIO assumes that only the first one in a sequence of labels of the 
same type is a “B-” label. 

 
− create_pickle.py 

 USAGE: python3 create_pickle.py <label-set> <label-format> <input.tsv> 
<output.pickle> 
 <label-set> - The string “verbmobil”. 
 <label-format> - “io” for training sets, “bio” for validation and test sets. 
 <input.tsv> - The input file, containing the annotated data in tab-separated format. 
 <output.pickle> - The output file in .pickle format as expected by the main program. 

 This script creates .pickle files as needed by the main program ner.py. 
 

− date_time_rules.py 
 USAGE: python3 date_time_rules.py <input.tsv> <output.tsv> 

 <input.tsv> - The input file containing the data to be annotated in TSV format. 
 <output.tsv> - The output file with additional date/time annotation in TSV format. 

 This script identifies date and time expressions in the input data according to a set of 
rules. Matching words are annotated in BIO format, unless this would overwrite an 
existing non-”O” annotation. The result is written to the output file. 

 
− eval_annotations.py 

 USAGE: python3 eval_annotations.py <true-annotations> <predictions> [<label-
bodies>] 
 <true-annotations> - The path to the file containing the ground-truth annotations in 

TSV format. 
 <predictions> - The path to the file containing the annotations to evaluate against 

the ground-truth annotations in TSV format. 
 <label-bodies> - An optional parameter specifying the labels used without “B-” and 

“I-” prefixes. Default value: PER, ORG, LOC, DATE, TIME 
 This script prints precision, recall, and F-score values for each label. It also prints 

macro and micro averages and global accuracy. Unlike the standard CoNLL script, the 
“O” label is also considered in the computation of averages. 

 
− merge_annotations.py 

 USAGE: python3 merge_annotation.py <file1.tsv> <file2.tsv> [<file3.tsv> …] 
 <fileN.tsv> - The files whose annotations should get merged. All files must contain 

the same words in the same order and use the same label set. 
 This script merges together the annotations given by many files and writes the result 

to the file merged.tsv in the current working directory. For each word, if all annotations 
label the word as “O”, so will the output. Otherwise, the first non-”O” label will be used. 

 
− sample_merge_annotations.py 

 USAGE: python3 sample_merge_annotations.py <clean.tsv> <noisy.tsv> <noise-
level> <merged.tsv> [<force-clean-interval>] 
 <clean.tsv> - The path to the file containing manually annotated data. 
 <noisy.tsv> - The path to the file containing noisy annotations. 
 <noise-level> - A floating point value between 0 and 1. 
 <merged.tsv> - The output file that combines annotations from <clean.tsv> and 

<noisy.tsv>. 
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 <force-clean-interval> - An optional argument of the from <from>:<to> where 
<from> and <to> define an interval of word indices. 

 This script creates a new noisy annotation of the words found in the file <clean.tsv> 
by mixing the clean annotations found in the same file with noisy annotations provided 
by the file <noisy.tsv>. For each word, either the clean or the noisy label is selected at 
random so as to reach the desired noise level. For a continuous stretch of the words 
it is possible to force the selection of clean labels by providing the <force-clean-
interval> parameter: <from> specifies the first and <to> the last index of the words in 
said stretch of words. The result is written to the file <merged.tsv>. 

 
− sample_noise.py 

 USAGE: python3 sample_noise.py <clean-in.tsv> <noisy-out.tsv> 
 <clean-in.tsv> - The input file, containing clean annotations in TSV format. 
 <noisy-out.tsv> - The output file. 

 This script samples 1% of the labels found in the input file to create an estimate of the 
label distribution 𝑝(𝑙𝑎𝑏𝑒𝑙). Then it creates a noisy annotation for all words in the input 
file by sampling that distribution. The result is written to the output file. 

 
− sample_noise_prev_pos.py 

 USAGE: python3 sample_noise_prev_pos.py <clean-in.tsv> <noisy-out.tsv> 
 <clean-in.tsv> - The input file, containing clean annotations in TSV format. 
 <noisy-out.tsv> - The output file. 

 This script samples 1% of the labels found in the input file to create an estimate of the 
label distribution 𝑝(𝑙𝑎𝑏𝑒𝑙|𝑝𝑟𝑒𝑣; 𝑝𝑜𝑠). To this end, the flair NLP package is employed to 
automatically generate part-of-speech labels for each sentence in the input data. The 
script then creates a noisy annotation for all words in the input file by sampling that 
distribution. The result is written to the output file. 

5. Summary and outlook 

The COMPRISE initial library for weakly supervised learning provides software tools for weakly 

supervised training of speech-to-text and named entity tagging in text.  

The tools for training STT models are based on two main approaches proposed in the COMPRISE 

project, namely training guided by STT error predictions and weak supervision with dialogue 

states. Experimental evaluation on three different limited speech data scenarios, including domain 

mismatched and matched conditions, has demonstrated the effectiveness of these methods in 

terms of significant reduction in word error rate of STT conversion. Moreover, a combination of 

these two approaches gives further word error rate reductions. The evaluation also presented an 

analysis on error rates and amount of training data corresponding to fully supervised STT and 

those for the proposed weakly supervised training methods. This analysis shows that significant 

cost reductions can be expected from these initial methods proposed in COMPRISE. This should 

further encourage the use of the libraries provided for weakly supervised STT training. 

Future work on weakly supervised learning for STT AMs will explore methods to foster relevant 

word hypothesis and phone sequences in error regions. Future work on STT LMs will explore 

neural network based language models which represent words by continuous embedding vectors 

and are more promising for domain adaptation tasks. Additionally, they can be tightly coupled with 
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weak labels like dialogue states, intents and named entities. Limited target domain data and STT 

errors will be the two main challenges to be addressed in this direction. 

The proposed STT training approaches and libraries can benefit from the weakly supervised text 

processing methods proposed for named entity recognition tasks. The current dialogue state 

based weak supervision of STT models relies on existing dialogue state labels. In practice, these 

dialogue states are available from the dialogue system after inference on the non-reliable ASR 

transcriptions. Future work will involve a coordination between the weakly supervised training 

methods for STT and text processing to jointly exploit their benefits. 

Our work on text processing has so far focused on the NER task. This will change in future 

revisions to embrace a greater range of relevant tasks. We have spent considerable effort with 

the generation of appropriate noisy labels. To this end, we have explored different sampling 

methods and a knowledge-based method. The used “noise level” metric which is in other contexts 

known as “test error rate” has not proved helpful in deciding which type of noise to use for our 

weakly supervised learning experiments as they did not correlate with the final prediction results. 

Surprisingly, we found that a simple sampling method that takes a weak form of context into 

account performs best in our experiments using only 1% of clean data (Verbmobil corpus). Still, 

the overall performance is low, with F-scores under 50%. 

Therefore, we have started looking into alternative or complementary approaches. In particular, 

we look at cross-domain NER to leverage external knowledge in better ways than our first noise 

model could make use of. This is an avenue we plan to explore further in the future, possibly 

together with related work on “few-shot learning”. 

However, most importantly, we will perform a more in-depth error analysis to be able to make 

informed decisions on how to best proceed in our research. 

One further dimension that has deliberately been left out for this initial version of the library is that 

weakly supervised learning in COMPRISE should also be applicable to data collected after a 

voice-application developed with the COMPRISE SDK has been deployed. In that case, however, 

the data collected will have been privacy-transformed first. It will thus be an interesting additional 

challenge how noise not only in the labels but also in the data itself can be dealt with in the training 

of new models. 

Our software is made publicly available under an Open Source license. The two parts of the initial 
weakly supervised learning library can be accessed here: 

 Speech-to-text: https://gitlab.inria.fr/comprise/spoken-language-understanding-weakly-

supervised-learning 

 Text processing: https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-

learning 

 

  

https://gitlab.inria.fr/comprise/spoken-language-understanding-weakly-supervised-learning
https://gitlab.inria.fr/comprise/spoken-language-understanding-weakly-supervised-learning
https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning
https://gitlab.inria.fr/comprise/speech-to-text-weakly-supervised-learning
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