
 

 

 

Cost effective, Multilingual, Privacy-driven voice-enabled Services 

www.compriseh2020.eu 

 
Call: H2020-ICT-2018-2020 

Topic: ICT-29-2018 

Type of action: RIA 

Grant agreement Nº: 825081 

 

 

WP Nº3: Multilingual personalised 

voice interaction 

Deliverable Nº3.2: Initial personalised 

learning library for 

speech-to-text 

Lead partner: INRIA 

Version Nº:  1.0 

Date: 30/04/2020 

                    

 

 

http://www.compriseh2020.eu/


GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

2 

 

 
 

Document information 

Deliverable Nº and title: D3.2 – Initial personalised learning library for speech-
to-text 

Version Nº: 1.0 

Lead beneficiary: Inria 

Author(s): Denis Jouvet (INRIA) and Tuğtekin Turan (INRIA) 

Reviewers: Askar Salimbaev (Tilde) and Dietrich Klakow (USAAR) 

Submission date: 30/04/2020 

Due date: 30/04/2020 

Type1: OTHER 

Dissemination level2:  PU 

                                   

 

Document history 

Date Version Author(s) Comments 

08/04/2020 0.1 Denis Jouvet & 
Tuğtekin Turan 

Draft deliverable 

20/04/2020 0.2 Denis Jouvet & 
Tuğtekin Turan 

Modifications to take into account 
reviewers’ comments 

30/04/2020 1.0 Zaineb Chelly & 
Emmanuel Vincent 

Final version revised by the project 
manager and the coordinator 

 

 

  

                                                
1 R: Report, DEC: Websites, patent filling, videos; DEM: Demonstrator, pilot, prototype; ORDP: Open 

Research Data Pilot; ETHICS: Ethics requirement. OTHER: Software Tools 
2 PU: Public; CO: Confidential, only for members of the consortium (including the Commission Services)  



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

3 

 

 
Document summary 

This deliverable is devoted to the design, implementation, and evaluation of an initial 

personalised learning library for Speech-to-Text. It consists of this report and software 

components that are available to the public on the COMPRISE git repository3. Some of 

these software components will be integrated in the COMPRISE Cloud Platform and 

others in the COMPRISE Software Development Kit (SDK) Client Library. The report first 

recalls in Section 2 the COMPRISE modules that are impacted by this first version of 

personalised learning for Speech-to-Text. Section 3 describes the scientific approaches 

that have been investigated for this task. The approaches rely on taking into account the 

user’s characteristics through the addition of speaker embedding vectors which are 

provided to acoustic models along with the conventional spectral features. Experimental 

results are reported and discussed in Section 4. The introduction of speaker embedding 

vectors leads to 10% to 15% reduction in the word error rates and, in most cases, the x-

vector embeddings yield better performance than the conventional i-vector embeddings. 

We describe the main functionalities of the software library in Section 5. 

  

                                                
3 https://gitlab.inria.fr/comprise/deliverables/deliverable_d32 

https://gitlab.inria.fr/comprise/deliverables/deliverable_d32


GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

4 

 

 
Table of contents 

1. Introduction 5 

2. Architecture 5 

3. Scientific approach 7 

3.1. State-of-the-art and related work 8 

3.1.1. Accent variability 8 

3.1.2. Speaker variability 8 

3.1.3. Proposed approach 9 

3.2. Speaker embedding 9 

3.2.1. i-vector embedding 10 

3.2.2. x-vector(speaker) embedding 10 

3.2.3. x-vector(accent) embedding 11 

3.3. Acoustic modeling 11 

3.4. Semi-supervised learning 11 

4. Scientific results 12 

4.1. Experimental setup 12 

4.1.1. Dataset 12 

4.1.2. Acoustic model and lexicon 13 

4.1.3. Extraction of speaker embeddings 13 

4.2. Results and discussion 14 

4.2.1. Speaker embedding and training data 14 

4.2.2. Window length for speaker embedding 16 

4.2.3. Evaluation using privacy transformed speech data 18 

4.2.4. Inclusiveness 18 

4.2.5. Semi-supervised learning 19 

5. Software library 20 

5.1. Initial Steps 20 

5.1.1. Prerequisites 20 

5.1.2. Setup 21 

5.2. Run the Library 21 

6. Conclusion 22 

7. Bibliography 23 

  



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

5 

 

 
1. Introduction 

The objective of Work Package 3 is to enable any user to interact with dialog systems in 

any language. To achieve this objective, Work Package 3 focuses on combining machine 

translation with Speech-to-Text (STT) and text-to-speech, on combining machine 

translation with the components of a dialog system, and on adapting these models to 

every user. Deliverable D3.2 is concerned by this last point, and deals with personalised 

learning approaches. 

More precisely, Deliverable D3.2 describes the initial personalised learning library for 

STT. As STT in the COMPRISE library is based on Kaldi [Povey et al., 2011], the 

personalised learning approaches investigated and described in this deliverable also use 

the Kaldi toolkit and framework. To avoid storing user’s speech data on the user’s device, 

and thus to minimise memory requirements on the user’s device, the approaches 

investigated here rely on introducing speaker embedding features along with the usual 

spectral features in the STT processing. Several types of speaker embeddings are 

investigated including a conventional one based on i-vectors, and two other based on x-

vectors. i-vectors were initially developed for speaker recognition. Speaker embedding 

through x-vectors is a rather recent approach of speaker embedding, and was also 

developed for speaker recognition. The x-vectors are estimated through deep learning 

approaches. Initially x-vectors were estimated with a Deep Neural Network (DNN) trained 

to recognise speakers' identities. In this deliverable, a variant is proposed by training a 

DNN to discriminate between accents. 

For evaluating the proposed approaches, we have mainly used a speech corpus 

corresponding to spontaneous scheduling dialogues: the Verbmobil corpus (described 

in Section 4.1). This corpus contains a significant amount of non-native English speech, 

hence STT performance is evaluated on native and on non-native speech. Further 

experiments have also been conducted using accented English speech from the 

Voxforge project [Voxforge, 2020]. 

The deliverable is organised as follows. Section 2 explains where the computations take 

place in the global COMPRISE architecture. Section 3 details the scientific aspects. It 

positions the studied approaches with respect to the state-of-the-art, and then details the 

speaker embedding approaches, their integration with acoustic modeling, and presents 

a semi-supervised approach for training on more (unannotated) data. Section 4 presents 

the experimental setup, and then details and discusses the results. Some results are 

also given with respect to the application of the proposed approach on transformed 

speech data resulting from the application of the privacy-driven speech transformation 

presented in Deliverable D2.1. We describe the main functionalities of the software 

library in Section 5. 

2. Architecture 

Figure 1 positions STT training and decoding components in the overall COMPRISE 

architecture. In that figure, personalisation translates into the two “Speaker vector 

computation” blocks and their use by the subsequent “STT learning” and “STT” blocks.  

Personalised features such as i-vectors or x-vectors (see Section 3) are computed from 

the user’s speech signal. Such features, which provide a speaker embedding, have been 

initially proposed for speaker recognition, and hence carry speaker information. Taking 

such features into account in STT results in personalised computations.  



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

6 

 

 
To do so, the personalised features (i.e., the speaker embedding) are given as inputs to 

the DNN based acoustic model along with conventional spectral features. In the training 

branch, the model learns to map every observed sound to the corresponding phonetic 

class depending on the speaker embedding. The learning operates on data which have 

undergone a privacy-driven transformation. In practice, this transformation converts the 

voice of every original speaker into that of another random speaker called “target” (see 

Deliverable D2.2). Provided that the range of target speakers in the training data is large 

enough, this model is expected to generalize well to original speakers in the operating 

branch. Once this model has been trained, it can be downloaded on the user’s device. 

At run time, the speaker’s embedding is also computed and used by the STT decoder. It 

is important to note that this embedding remains on the user device and is never sent to 

the Cloud Platform, since it would reveal personal features of the user. Note also that, 

for online decoding, speaker embeddings are computed on the fly and regularly updated 

(typically every 100 ms) during the decoding process. 

 

Figure 1: Overview of STT training and decoding in COMPRISE. 

 

Compared to the original figure in Deliverable D2.1, the “speaker vector computation” 

block in Figure 1 has been moved to the center of the figure, and to the “Cloud Platform” 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

7 

 

 
(lower right), since it computes the speaker embedding which is used both for training 

the acoustic model and for decoding at run time by the STT module on the user’s device. 

Also, since personalisation is achieved through the additional use of speaker embedding 

information at the input of the acoustic model, there is no need for further adaptation of 

the acoustic model to each speaker. Hence, the personalization block, as mentioned in 

D2.1, is no longer needed, and has been removed from the figure.  

3. Scientific approach 

After a presentation of the state-of-the-art and related works in Section 3.1, the proposed 

approach for personalising STT is described in detail. Section 3.2 presents the speaker 

embeddings that are computed to represent the speaker information which is then 

exploited by the acoustic models, along with spectral features. Section 3.3 summarises 

design choices for acoustic modeling. Finally, Section 3.4 describes the semi-supervised 

process proposed for handling larger amounts of untranscribed non-native speech data. 

Figure 2 illustrates the overall approach. 

 

 

Figure 2: Training process for STT model personalisation involving three main blocks: 

(i) speaker embedding, (ii) acoustic modeling, (iii) semi-supervised learning. 

 

Speaker adaptation of STT models can be achieved by modifying parameters of the 

acoustic models in order to match some adaptation utterances of the desired speaker. 

Another approach consists in making the acoustic model speaker-aware, by providing 

speaker-specific information at the input of the DNN, along with spectral features. This 

is achieved through speaker embeddings. In the following, we consider three types of 

speaker embeddings: conventional i-vectors, and two flavors of x-vectors obtained by 

training the x-vector extractor to classify either speakers or accents, from spectral input 

features. The last hidden layer of the extractor determines the x-vector embedding. 

In such an approach, the acoustic model handles jointly two sets of input features: one 

that represents the spectral information, and one that corresponds to the speaker 

embedding. 

The semi-supervised learning block is an additional module that is used during training 

to provide supervision for unlabeled accented speech. It is based on STT processing; 

the lattice that results from the decoding is used to determine different possible 

transcripts and the associated weights. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

8 

 

 
3.1. State-of-the-art and related work 

STT performance degrades when there is a mismatch between the training and test 

speakers [Siniscalchi et al., 2013]. Gender and accent are regarded as the most 

important factors of this mismatch [Yao et al., 2014]. Current ASR models trained on 

native speech data often experience a dramatic loss of accuracy for speakers with strong 

accents [Viglino et al., 2019]. However, there is relatively little research on accented STT, 

especially for speakers who have a different mother tongue.  

3.1.1. Accent variability 

With the advent of smart voice-assistants and dialogue systems, voice interfaces can 

perform daily tasks such as booking tickets, setting up calendar items or finding 

restaurants via spoken interactions [Celikyilmaz et al., 2015]. Voice technology also 

encourages several applications about education, government, healthcare, and 

entertainment [Sarikaya et al., 2016]. Non-native speakers in these systems have a very 

wide variety of accents usually influenced by their native language. Hence, accented 

speech introduces heterogeneous characteristics and affects the overall performance of 

any dialogue system. 

Previous research on non-native or foreign-accented speaker adaptation mainly 

transforms the acoustic model, initially trained on unaccented speech. The simplest 

approach is merely the use of Maximum Likelihood Linear Regression (MLLR) on unseen 

speakers [Tomokiyo and Waibel, 2003]. A more effective approach is to train an accent-

specific model for each accent [Elfeky et al., 2016]. Although it performs well, a separate 

model per accent increases computational cost [Nguyen et al., 2017]. This has motivated 

research on recognising speech from multiple accents with a single model. However, this 

approach can underperform compared to accent-specific models, especially when the 

accented data is scarce [Li et al., 2018]. 

Collecting sufficient data may be infeasible due to the large number of possible accents. 

Recently, there have been many attempts to improve the single-model approach for 

accented STT. One such approach is based on multi-task learning, where the model is 

trained not only to predict phonemes but also to identify accents [Yang et al., 2018]. 

Other approaches provide auxiliary input such as bottleneck features or dialect 

information to make more adaptive models [Jain et al., 2018]. In another approach, an 

accent-specific model is obtained simply by training on all the available data and then 

fine-tuning on non-native samples [Huang et al., 2014]. One of the main drawbacks is 

that such a method needs to maintain several steps for a given accent, which increases 

maintenance effort in an ASR system dealing with many accents or dialects [Yoo et al., 

2019]. 

3.1.2. Speaker variability 

Many factors about speaker variability are complex in nature and there is no 

straightforward solution or model compensation for them. Hence, speaker adaptation 

methodologies either learn speaker transformations from target examples or require 

some additional data to adjust the large set of parameters in the ASR system [Zhang et 

al., 2013]. 

Different approaches have been proposed to reduce the mismatch between training and 

test environments in traditional STT systems. For Gaussian Mixture Model (GMM) based 

acoustic models, speaker adaptation has proven to be effective for many years within 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

9 

 

 
the transformation-based and Bayesian approaches. Methods like Maximum A Posteriori 

(MAP) adaptation [Tsao et al., 2011], eigenvoice speaker adaptation [Weiss and Ellis, 

2010] or MLLR [Povey and Yao, 2011] focus on transformations in the model space of 

either the Gaussian means or both the Gaussian means and variances. On the other 

hand, the feature-space MLLR (fMLLR)-based approach [LI et al., 2002] applies the 

MLLR transform on the features. 

STT accuracies have improved substantially over the past years with the help of DNN- 

based acoustic models. It is reported that Word Error Rate (WER) has reduced between 

10 to 32% in a wide variety of tasks compared with GMM-based systems [Hinton et al., 

2012]. Although displaying superior generalisation ability with respect to GMMs, DNN-

based models still suffer from the mismatch between speakers. Several methods have 

been proposed for speaker adaptation in DNN-based models. The most straightforward 

approach is to augment Speaker-Independent (SI) models by adding some speaker-

specific layers that are trained on the adaptation data [Kumar et al., 2015; Zhang and 

Woodland, 2016]. Similarly, it is also possible to re-update certain layers of the SI model 

[Zhao et al., 2018; Xie et al., 2019]. However, these methods are very prone to over-

fitting especially when adaptation data is coming from particular speakers [Kitza et al., 

2018]. I-vectors, which capture both speaker and environment specific information, have 

been shown to be useful for rapid adaptation [Karafiát et al., 2011; Saon et al., 2013; 

Xue et al., 2014]. These vectors are used as an additional input to the feature layer of 

the DNN acoustic model. In initial versions, during training and recognition, one i-vector 

per utterance is computed and all the frames corresponding to a particular speaker have 

the same i-vector appended to them. 

3.1.3. Proposed approach 

Here, we focus on non-native and accent issues that are addressed in a general STT 

framework. The impact of non-native and accented speech is explored using the Kaldi 

toolkit [Povey et al., 2011]. Cross-accent recognition experiments show that the error 

rates are increased up to 25-35% when the acoustic model and the test data are from 

different accents. To deal with accent variability, we trained a single model that includes 

speaker embeddings, employed as additional input features for the senone classifier. It 

is also possible to achieve better performance by adding a small amount of enrollment 

data from non-native and/or accented speech. Our STT systems rely on Time-Delayed 

Neural Network (TDNN) acoustic models [Peddinti et al., 2015] trained using the Lattice-

Free Maximum Mutual Information (LF-MMI) criterion [Povey et al., 2016] and the cross-

entropy criterion simultaneously. For the sake of simplifying our experiments, we focus 

here only on non-native and accented English. Nevertheless, we believe that our 

proposed approach will also be helpful for accented speech in other languages. 

3.2. Speaker embedding 

Three types of speaker embeddings are considered: i-vector, x-vector(speaker), and x-

vector(accent). The last two are computed by means of a DNN which is either trained to 

recognise speakers for the x-vector(speaker) embedding, or trained to recognise accents 

for the x-vector(accent) embedding. We use the term ‘x-vector’ for both approaches 

because they are based on a similar deep learning formalism, but we indicate in 

parentheses the classification objective of the DNN. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

10 

 

 
3.2.1. i-vector embedding 

Initially developed for speaker recognition [Dehak et al., 2011] i-vectors have been 

largely used in other speech processing tasks. Each speech segment is assumed to be 

represented by a GMM and principal component analysis is applied to the GMM 

supervectors4. The basic assumption is that all speech segment supervectors are 

confined to a low dimensional subspace of the GMM supervector space so that each 

utterance supervector is specified by a small number of coordinates. The supervector 𝑀 

of a GMM adapted on a speech segment can be expressed as 

 𝑀 = 𝑚 + 𝑇 𝑤 (1) 

where 𝑚 is the supervector of the Universal Background Model (UBM), 𝑇 is a low rank 

projection matrix, and 𝑤 is the resulting i-vector which characterises the speech 

segment. 

3.2.2. x-vector(speaker) embedding 

‘x-vector(speaker)’ embedding was introduced in [Snyder et al., 2018]. The embedding 

is based on a DNN model as the one represented in Figure 3, where a TDNN is used to 

handle a short-term temporal context. The lower layers of the network do frame-level 

processing. The upper layers do segment-level processing: after pooling the frame-level 

information, they provide a representation (last hidden layer) which is independent of the 

length of the speech segment. This representation is the x-vector speaker embedding. 

 

Figure 3: DNN model used for extracting x-vector embeddings. It combines frame-level 

processing (lower layers) and segment-level processing (higher layers). The segment-

level embeddings are extracted from the last hidden layer. 

 

For conventional x-vectors (here named ‘x-vector(speaker)’), the network is trained to 

classify speakers using a multi-class cross entropy objective function defined in Eq. (2). 

Let 𝐾 denote the number of speakers in the 𝑁 training speech segments, and 𝑝 (𝛼𝑘|𝑥1:𝑇
(𝑛)

) 

the probability of speaker 𝑘 given the 𝑇 input frames 𝑥1
(𝑛)

, . . , 𝑥𝑇
(𝑛)

 of the speech segment. 

The cross-entropy objective function is thus 

                                                
4 The GMM supervector is the concatenation of the mean vectors of all the Gaussian components. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

11 

 

 

 𝐸 = − ∑ log (𝑝 (𝛼𝑘(𝑛)|𝑥1:𝑇
(𝑛)

 ))

𝑁

𝑛=1

 (2) 

where  𝛼𝑘(𝑛) is the speaker ID of the speech segment 𝑥1:𝑇
(𝑛)

. 

3.2.3. x-vector(accent) embedding 

The proposed approach to derive an ‘x-vector(accent)’ embedding is very similar to the 

approach used to derive an ‘x-vector(speaker)’ embedding. It also relies on a DNN 

model, however, here, the output layer is used to recognise accents instead of speakers. 

So, the formula of Section 3.2.3 still holds here, but now 𝛼𝑘(𝑛) corresponds to the accent 

present in the speech segment 𝑥1:𝑇
(𝑛)

. 

3.3. Acoustic modeling 

We use TDNNs as acoustic models [Peddinti et al., 2015] since they have been shown 

to learn effectively the temporal dynamics of the speech signal from short-term feature 

representations [Waibel et al., 1989]. The model is used for representing rather long-

term temporal dependencies from short-term spectral features.  

The acoustic models are trained using the LF-MMI training criterion [Povey et al., 2016] 

and the cross-entropy criterion simultaneously.  

3.4. Semi-supervised learning 

In some cases, for example when dealing with non-native or accented speech, obtaining 

large amounts of transcribed speech data is difficult, while the amount of untranscribed 

speech data may be larger by several orders of magnitude. In such cases, a semi-

supervised approach might be useful. 

We applied this idea for training acoustic models using the LF-MMI objective [Manohar 

et al., 2018]. The main idea behind the approach is to apply a Finite-State Transducer 

(FST) based supervision. This provides a natural way to incorporate uncertainties when 

dealing with untranscribed speech data and allows the supervision of lattices obtained 

via decoding of untranscribed speech data. 

In this setting, the minimisation of lattice entropy is the natural extension of the MMI 

objective to the semi-supervised setting. Given the transcriptions 𝑊 and acoustic 

features 𝑋, the MMI estimation can be defined as 

 ℱ𝑀𝑀𝐼(𝜆) = ∑ log(𝑝(𝑊𝑟|𝑋𝑟; 𝜆))

𝑟

 (3) 

where the index 𝑟 ranges over all training utterances, and 𝜆 represents the parameters 

of the model. In the semi-supervised learning approach, an average of this expression 

over all possible reference transcripts 𝑊𝑟 is obtained taking into account the probabilities 

of the word sequences in the lattice 

 ℱ𝑆𝑆𝐿(𝜆) = ∑ ∑ 𝑝(𝑊𝑟|𝑋𝑟; 𝜆)

𝑊

log(𝑝(𝑊𝑟|𝑋𝑟; 𝜆))

𝑟

. (4) 

This criterion is also known as negative conditional entropy [Manohar et al., 2015]. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

12 

 

 
4. Scientific results 

This section presents the experiments that have been conducted. Section 4.1. describes 

the experimental setup, and Section 4.2. presents and discusses the main obtained 

results. 

4.1. Experimental setup 

4.1.1. Dataset 

A large part of the evaluations has been conducted on the Verbmobil corpus [Hess et 

al., 1995] which contains spontaneous dialogue speech taken from human-human 

scheduling dialogues. In Verbmobil, we selected the volumes related to American 

English as native samples and accented English spoken by Germans as non-native 

speech.  

For the initial set of experiments, the data used for training and test are as described in 

Table 1.  

Table 1: Initial split of Verbmobil data used in the first set of STT personalisation 

experiments. 

Training data Test data 

Type of data 
Number of 
speakers 

Duration 
(h) 

Type of data 
Number of 
speakers 

Duration 
(h) 

Native (US) 260 24.5 
Mainly non-native 

(German speakers) 
34 3.8 

 

A revised split of the Verbmobil data was later defined to better evaluate the 

performances on native speech and non-native speech, respectively; and to evaluate 

the benefit of adding a small amount of non-native speech data in the training set. 

Moreover, accented English speech data has been taken from VoxForge open corpora 

[VoxForge, 2020]; this includes Australian, Indian and British English. Table 2 provides 

a description of the speech datasets used in STT experiments. 

Table 2: Revised split of Verbmobil and VoxForge data used in the second set of STT 

personalisation experiments. 

Corpora 
Type of 

data 

Training data 
Additional 

training data 
Test data 

Number of 
speakers 

Dur. (h) 
Number of 
speakers 

Dur. (h) 
Number of 
speakers 

Dur. (h) 

Verbmobil 

Native  
(US) 

235 25.4 --- --- 25 1.1 

Non-native 
(DE) 

--- --- 25 1.0 25 1.1 

VoxForge 

British  
(UK) 

--- --- 28 1.0 25 1.2 

Australian 
(AU) 

--- --- 23 1.0 25 1.3 

Indian  
(IN) 

--- --- 21 1.0 25 1.4 

 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

13 

 

 
Two types of STT experiments are conducted with these data. The first set of 

experiments is based on training acoustic models using only native speech data (column 

‘training data’ of Table 2). The second set of experiments is conducted by including also 

non-native and/or accented data in the training process (cf. column ‘additional training 

data’ of Table 2). Note that non-native datasets are much smaller than the native one, 

which is a common setting in multi dialect STT [Yoo et al., 2019]. 

In addition, the speech data described in Table 3 have been used for training the DNN 

model that provides the x-vector(accent) embedding. As above, the native (US) and non-

native (DE - by German speakers) speech data come from the Verbmobil corpus, and 

the three other accented datasets (British, Australian, and Indian) come from VoxForge. 

Of course, the speakers are different from those selected in the test sets described in 

Table 2. 

Table 3: Description of the speech datasets used to train the DNN model for x-

vector(accent) embedding. 

Corpora Type of data Number of speakers Duration (h) 

Verbmobil 
Native (US) 235 25.4 

Non-native (DE)   54   3.4 

Voxforge 

British (UK) 148   5.7 

Australian (AU) 117   3.4 

Indian (IN)   79   3.1 

  

In all experiments, we use Mel-Frequency Cepstral Coefficients (MFCCs) computed over 

25 ms windows, with a 10 ms frame shift, using Kaldi scripts. 

4.1.2. Acoustic model and lexicon 

The TDNN acoustic model operates on 40-dimensional MFCC features and is similar to 

the model specified in [Peddinti et al., 2015].  If  is the current time step, the first layer 

splices frames {𝑡 − 2, 𝑡 − 1, 𝑡, 𝑡 + 1, 𝑡 + 2} together at the input layer; then the following 

five hidden layers splice the previous layer output at the following offsets: {−1, +1}, 
{−1, +1}, {−3, +3}, {−3, +3}, {−6, +3}. As indicated in [Povey et al., 2016], index 

differences that are multiples of 3 for most of the hidden layers helps reduce the amount 

of computations for the chain models that use a subsampling factor of 3. 

The speed-perturbation technique [Ko et al., 2015] is used with a 3-fold augmentation 

where copies of training data are created according to factors of 0.9, 1.0 and 1.1. 

For decoding, we use a lexicon containing 6945 words, and a 3-gram language model 

trained on only native data consisting of 214,036 word occurrences with a perplexity of 

42.7. All experiments are conducted using the same language model and the same 

language model weight. 

4.1.3. Extraction of speaker embeddings 

The speaker embeddings are appended to the MFCC features. By default, and unless 

otherwise specified, the speaker embeddings are updated every 10 frames, i.e., every 

100 ms. The speaker embeddings are extracted and handled using the Kaldi framework. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

14 

 

 
i-vector embeddings have a dimension of 100. They are extracted using a 512-Gaussian 

GMM applied on 40-dimensional acoustic features. The acoustic features are obtained 

by linear discriminant analysis applied on 10 stacked (i.e., 100 ms) MFCC frames of 

dimension 13. 

The x-vector(speaker) embeddings are computed using a DNN trained on the Verbmobil 

data. We found that this leads to better STT performance than training on the bigger  

VoxCeleb corpus [Nagrani et al.]. The x-vector(speaker) embeddings have a dimension 

of 512, and are computed over 250 ms windows corresponding to 25 MFCC frames of 

dimension 13. 

The x-vector(accent) embeddings are obtained in a similar way, except that the DNN is 

trained to recognise accents instead of speaker IDs. The embeddings are computed over 

400 ms windows corresponding to 40 MFCC frames. The architecture of the DNN is 

described in Table 4. The frame level layers correspond to a TDNN approach. The 

pooling layer extracts information over the whole considered segment. The DNN used 

for extracting this embedding was trained on the speech data described in Table 3.  

Table 4: Architecture of the DNN used to compute the x-vector(accent) embedding 

(extracted from layer segment7, before the non-linearity). The input layer accepts F-

dimensional features and K corresponds to the number of accents. 

Layer Context Frames Inputs × Outputs 

frame1 {𝑡 − 2, 𝑡 − 1, 𝑡, 𝑡 + 1, 𝑡 + 2}   5 (5 × 𝐹) × 512 

frame2 {𝑡 − 2, 𝑡, 𝑡 + 2}   9 (3 × 512) × 512 

frame3 {𝑡 − 3, 𝑡, 𝑡 + 3} 15 (3 × 512) × 512  

frame4 {𝑡} 15 512 × 512 

frame5 {𝑡} 15 512 × 1500 

pooling Segment [0, 𝑇)   𝑇 (𝑇 × 1500) × 3000  

segment6 ---   𝑇 3000 × 512 

segment7 ---   𝑇 512 × 512 

softmax ---   𝑇 512 × 𝐾 

 

4.2. Results and discussion 

This section presents and discusses the results of the experiments. They are grouped in 

several subsections corresponding respectively to the impact of speaker embedding and 

the training data, the impact of the length of the window used to compute the speaker 

embedding, the application of the approach on privacy transformed speech signals, an 

analysis of speaker inclusiveness, and finally preliminary results achieved with semi-

supervised learning. 

4.2.1. Speaker embedding and training data 

The first set of experiments have been conducted on the Verbmobil data using the initial 

split described in Table 1. The WERs achieved on the test set are reported in Table 5.  



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

15 

 

 
Table 5: WER (%) on the test set of the initial Verbmobil split with respect to the type of 

model and the type of speaker embedding used. 

Model Embedding Test WER 

GMM/HMM none 34.7 % 

GMM/HMM with fMLLR none 28.9 % 

Neural networks 
(Kaldi nnet3) 

none 30,7 % 

i-vector 26.1 % 

x-vector(speaker) 25.7 % 

Sequence trained neural network 
(Kaldi chain) 

none 28.3 % 

i-vector 23.8 % 

x-vector(speaker) 23.1 % 

 

Word error rates are quite high because the training is carried out on native data only, 

and 85% of the test data is non-native speech. The Kaldi chain model outperforms the 

other types of acoustic models. This type of acoustic model will be used in the remaining 

experiments. Adding speaker embeddings, whether i-vector or x-vector(speaker), 

improves the STT performance. The best results are achieved with the x-vector(speaker) 

embedding. This is consistent with the fact that x-vectors lead to better performance than 

i-vectors for speaker recognition. 

The revised split of the Verbmobil data (cf. Table 2, top) is now used to analyze the 

behaviour with respect to native and non-native speech. Results are reported in Table 6. 

Here, the DNN model used to estimate the x-vector(speaker) embedding has been 

trained jointly on the VoxCeleb and Verbmobil corpora. 

Table 6: WER (%) on the test set of the revised Verbmobil split with respect to the 

training data and the type of speaker embedding used. 

Training data Embedding 

Test WER 

Native 
(US) 

Non-native 
(DE) 

Native speech only 

None 13.7 % 35.3 % 

i-vector 12.2 % 33.2 % 

x-vector(speaker) 12.2 % 31.7 % 

Native speech 
+ 1 hour of non-native speech 

None 12.9 % 24.6 % 

i-vector 11.8 % 22.7 % 

x-vector(speaker) 11.5 % 25.4 % 

 

The speaker embeddings provide a larger performance improvement for the acoustic 

models trained on native speech only. The behavior of speaker embeddings is less 

consistent on the non-native test data when a small amount of non-native speech is 

included in the training data. However, including a small amount of non-native speech in 

the training data leads to a large improvement of the STT performance on non-native 

test data. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

16 

 

 
Another set of experiments has been conducted using the data described in Table 2, 

which includes native and non-native data from Verbmobil, and several accented speech 

data from VoxForge. The results are reported in Table 7. 

The results show that when dealing with native, non-native and accented speech, adding 

the x-vector(accent) embedding which characterises the accent present in the utterance 

leads to the best STT performance. Also, adding a small amount of non-native and 

accented speech in the training data leads to significant improvement in STT 

performance. Surprisingly, the STT performance is better on the English non-native 

speech (uttered by German speakers) than on the English accented speech (British, 

Indian and Australian). This is likely due to a difference in acquisition conditions (between 

Verbmobil data and Voxforge data), and a domain mismatch, hence a language model 

that better matches the Verbmobil data than the Voxforge data. Indeed, with respect to 

the language model used, the perplexities of the various test sets are 29.8 for non-native 

(DE) data, 117.3 for British accent (UK) data, 195.3 for Indian accent (IN) data, and 137.2 

for Australian accent (AU) data. 

Table 7: WER (%) achieved on native (US), non-native (DE) and accented speech 

(UK, IN, and AU), for different embeddings and training conditions. 

Model Embedding 
Additional 

data 

Native 
Non-native or accented 

speech 

US all DE UK IN AU 

GMM/HMM + 
fMLLR 

None 

none 

19.5 52.9 38.6 46.2 65.8 53.9 

DNN None 13.6 45.3 35.2 43.4 56.9 45.1 

DNN i-vector 12.4 39.9 32.6 36.8 51.6 39.5 

DNN  x-vector(accent) 12.1 38.5 31.5 38.3 45.2 38.1 

GMM/HMM + 
fMLLR 

None 

1 hour 
per 

accent 

20.6 45.5 29.2 42.8 61.4 46.5 

DNN None 13.5 40.4 24.1 40.6 55.4 39.3 

DNN i-vector 12.3 36.1 24.6 36.3 45.1 34.6 

DNN x-vector(accent) 11.8 34.5 23.3 36.1 43.7 36.5 

 

4.2.2. Window length for speaker embedding 

Figure 4 displays STT results on the test set of Verbmobil (revised split) with respect to 

the minimum length of the utterances and to the size of the windows used to compute 

the x-vector(speaker) embedding for training and for test. The horizontal axis refers to 

the minimum duration of the utterances. For example, 100 on the horizontal axis 

corresponds to considering all the utterances that are longer than 100 frames, that is 

longer than 1.0 s. With respect to the curves ‘train-10’, ‘train-40’, ‘train-100’, and ‘train-

400’, the number specifies the length (in frames) of the window used to compute the 

embedding vector during training. For example ‘train-100’ means that, in the training 

data, the embedding is computed on 100 frames (i.e., 1.0 s), and updated every 100 

frames. For these curves, the horizontal axis also specifies the length of the window used 

to compute the vector embedding on the test data. For example, for the horizontal mark 

‘100’, the first embedding vector is computed on 100 frames, and then the embedding 

vector is updated every 100 frames. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

17 

 

 
 

 

Figure 4: WER (%) with respect to the minimum length of the utterances (horizontal 

axis) and the window size used to compute the speaker embedding (curves). 

Figure 4 shows that results improve for longer utterances and when the embedding is 

computed on longer time windows (the 95% confidence interval varies from ± 0.6% when 

considering utterances longer than 10 frames, to ± 0.8% when considering utterances 

longer than 800 frames). The improvement on longer utterances can be explained by the 

fact that, for long time windows, more speech data is available to estimate the speaker 

embedding. With respect to the curves, two facts have to be taken into account. When 

the window used to compute the speaker embedding gets longer, the embedding gets 

more reliable, and this should lead to better performance. However, it must be noted that 

the embedding is computed over a segment, and this embedding vector is associated to 

all the frames of the segment. In the train-100 case for instance, a first vector embedding 

is computed using the 100 first frames, and then associated with the spectral features of 

these frames. Then for the next 100 frames, a new embedding is computed using the 

200 first frames, and associated with the spectral features of the frames 101 to 200, and 

so on. So using long windows for computing the speaker embeddings drastically reduces 

the number of speaker embedding vectors, and thus the variability of the training data. 

This explains why the best results are observed for intermediate durations of the window 

used to compute the embedding. 

One should also keep in mind that using long time windows to compute the embedding 

introduces delays which may not be compatible with real-time interaction. Nevertheless, 

since this provides more reliable speaker information, it may be interesting to investigate 

this issue in dialog situations, for example by taking also into account previous utterances 

of the speaker. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

18 

 

 
4.2.3. Evaluation using privacy transformed speech data 

COMPRISE has proposed a privacy-driven transformation to be applied to speech 

signals to hide the speaker identity. Here, we evaluate the performance on privacy 

transformed speech data using the Vocal Tract Length Normalisation (VTLN) based 

transformation that was described in Deliverable D2.1. Among the target speaker 

selection strategies proposed, we use strategy 2, which selects a target speaker at 

random for each source speaker. Results are presented in Table 8. VTLN transformation 

is applied to both training and test data. 

Table 8: Performance on VTLN transformed data of the test set of the revised 

Verbmobil split with respect to the training data and the type of speaker embedding 

used. 

Training data Embedding 

WER on test data 

Native 
(US) 

Non-native 
(DE) 

Native speech only 

None 17.9 % 46.8 % 

i-vector 15.7 % 41.2 % 

x-vector(speaker) 16.2 % 39.9 % 

Native speech 
+ 1 hour of non-native speech 

None 19.0 % 37.4 % 

i-vector 16.7 % 29.4 % 

x-vector(speaker) 16.1 % 33.4 % 

 

We observe the same behavior on privacy transformed speech that on original speech 

(cf. Table 6). Adding speaker embeddings improves the STT performance. In addition, 

including a small amount of non-native speech in the training data provides a large 

reduction of the WER on non-native speech. 

4.2.4. Inclusiveness 

We now investigate the benefit of personalisation on easy-to-recognise and difficult-to-

recognise speakers. To do this, we rank the 25 speakers of each test subset according 

to the corresponding STT performance with the DNN model that does not use speaker 

embeddings. The 5 speakers that have the best score constitute group G1, the next 5 

speakers constitute group G2, and so on. We then observe the impact of personalisation 

through the usage of x-vector(speaker) embedding on each subset of speakers. Table 9 

reports these results for both models trained on native speech only (middle part of the 

table), and for models trained on native and non-native data (right part of the table). 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

19 

 

 
Table 9: WER (%) and relative WER reduction with respect to speaker groups. The 25 

speakers of each test subset are split into 5 groups according to the WER obtained 

with the DNN model without speaker embedding. 

Model 
Group of 
speakers 

Training on native 
data only 

Training on native and 
non-native data 

Native 
(US) 

Non-native 
(DE) 

Native 
(US) 

Non-native 
(DE) 

DNN 
no-embedding 

G1 6.1 22.6 5.9 16.7 

G2 9.8 30.1 10.2 19.4 

G3 12.6 32.5 11.3 24.8 

G4 15.2 42.9 14.5 27.5 

G5 26.3 47.2 23.7 36.7 

DNN 
x-vector(speaker) 

embedding 

G1 6.3 21.7 6.1 17.2 

G2 9.1 28.2 7.5 21.9 

G3 10.8 30.3 10.2 25.7 

G4 14.7 36.5 14.3 27.4 

G5 23.5 43.6 21.7 33.1 

Relative  
reduction 

of the WER 

G1   -3%    4%  -3%   -3% 

G2    7%    6% 26% -13% 

G3 14%    7% 10%   -4% 

G4    3% 15%    1%    0% 

G5 11%    8%    8%   10% 

 

In Table 9, the first set of rows reports the word error rates for each group of speakers 

with the model that does not include speaker embedding. The second set of rows reports 

the word error rates with x-vector(speaker) embedding. The last set of rows indicates the 

reduction in word error rates due to the introduction of the speaker embedding. It is 

interesting to see that there is almost no modification of the word error rates for the first 

groups of speakers (row G1); these speakers are well recognised whether the 

embedding is used or not. Another interesting point is the improvement observed for the 

last groups of speakers (row G5). On average a 10% relative WER reduction is observed 

on both native (US) and non-native (DE) test data, whether non-native speech is included 

or not in the training data. 

4.2.5. Semi-supervised learning 

The last set of experiments reports the performance achieved in the semi-supervised 

setting, i.e., when the training data includes both transcribed native speech and non-

native speech without any transcription. Table 10 reports our preliminary experiments on 

this setting, using only one hour of non-native speech data. 

The first and last rows report the performance resulting from the use of the conventional 

supervised training procedure. In the top row, supervised training is applied on native 

speech only: this is our baseline. The bottom row reports the results when supervised 

learning is applied to both native and non-native speech data: this is our topline, i.e., the 

best result that could possibly be achieved if the non-native data were transcribed. The 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

20 

 

 
middle row uses the same training data, but the non-native speech material (about 1 h 

of speech) is used without its transcriptions. It is interesting to note that semi-supervised 

learning further improves the WER on top of x-vector(speaker) embedding, and the 

performance in this setting is between the baseline performance (first row) and the target 

performance (last row). 

Table 10: Preliminary experiments with semi-supervised learning. All models include x-

vector(speaker) embedding. 

Training process 
WER on US  

(native) 
WER on DE (non-

native) 

Training on native data only 
(supervised) 

12.2% 31.7% 

Training on native and non-native data 
(semi-supervised setting) 

11.7% 30.2% 

Training on native and non-native data 
(supervised) 

11.5% 25.4% 

 

This semi-supervised approach could be applied to much larger training datasets, as no 

transcriptions are required. This will be the goal of future evaluations. 

5. Software library 

This package defines an initial version of COMPRISE’s personalised learning library. All 

the components are consistent with Kaldi tools and binaries. The initial library focuses 

on learning embeddings for different accents which can be used as additional inputs to 

the acoustic model. For this purpose, we use the TDNN library for acoustic modeling and 

the SRILM toolkit for language modeling. Both of them can easily be accessed inside the 

Kaldi ecosystem. Installation and usage instructions are given below. 

5.1. Initial Steps 

The software has been tested and verified with Kaldi patch number 2b30a1e43. Please 

check your version using hash files in your Kaldi installation by git log -1 --

format="%H". You can also check the versioning scheme from the official 

documentation. Make sure that you are using a version >=5.5.594 due to the non-

backward compatible changes. 

5.1.1. Prerequisites 

• The personalised learning scripts employ both the Verbmobil and VoxForge 

corpora. It is also possible to use other datasets after arranging them as in 

Kaldi preparation style. 

• We use the Verbmobil corpus for native American English and German 

accented English. British, Australian and Indian accented speakers are 

extracted from VoxForge corpora. 

• English dialogs can be accessible from Verbmobil-I and Verbmobil-II. This 

implies CDs 6, 8 and 13 for Verbmobil-I, and CDs 23, 28, 31, 32, 42, 43, 47, 

50, 51, 52, 55, 56 for Verbmobil-II. 

• Data from VoxForge is freely-available on their official project page. It is 

possible to use your own implementation for fetching the data or extract them 

using another Kaldi script. 

https://kaldi-asr.org/doc/chain.html
http://www.speech.sri.com/projects/srilm
https://github.com/kaldi-asr/kaldi/pull/3813
https://kaldi-asr.org/doc/versions.html
https://kaldi-asr.org/doc/versions.html
https://www.phonetik.uni-muenchen.de/Bas/BasVM1eng.html
https://www.phonetik.uni-muenchen.de/Bas/BasVM2eng.html
http://www.voxforge.org/home/downloads
https://github.com/kaldi-asr/kaldi/blob/master/egs/voxforge/s5/getdata.sh


GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

21 

 

 
• To install the SRILM toolkit, run the tools/extras/install_srilm.sh script 

located under your Kaldi folder. 

• A python script is used for merging x-vector embeddings after extraction. For 

this purpose, a module for reading and writing Kaldi ark files is required. Install 

it by pip install kaldiio. You can also download it directly from its source. 

5.1.2. Setup 

• Modify the symbolic links of the steps and utils folders in the main directory to 

point to egs/wsj/s5/steps and egs/wsj/s5/utils respectively, under your 

Kaldi installation. 

• If you use data other than 16 kHz sampling rate, modify relevant files in conf/ 

accordingly. 

• Prepare the path.sh file in this folder which points explicitly to KALDI_ROOT 

and SRILM installations as well as other common paths. 

• Create a cmd.sh file in this folder based on your running queue for Kaldi. If you 

have GridEngine installed, you should also create the queue.pl file with 

arguments specifying where GridEngine resides. 

5.2. Run the Library 

(1) Data Preparation: run_1_data_prep.sh 

This script creates directories in data which will store training and test sets, and 

language model files. The following files should be present for each accented speech: 

text, spk2utt, wav.scp, spk2gender (see the details here). Additionally, 

extra_questions, nonsilence_phones, optional_silence,silence_phones and 

lexicon.txt should be prepared under data/local/dict. If you have non-verbal 

lexical entities like [noise] or [laughter], don't forget to specify them in lexicon.txt 

and nonsilence_phones. Language model parameters are automatically selected with 

respect to smallest perplexity in the test set. 

(2) Train GMM-HMM models: run_2_train_hmm.sh 

This is a required step for further TDNN training. At the end of this script, alignments of 

triphone models are calculated. 

(3) Train TDNN models without embeddings: run_3_mfcc.sh 

This is the baseline model for personalisation experiments. Both training and decoding 

is done without any speaker embedding. Instead only spectral features (MFCCs) are 

utilised for acoustic model training. Note that GPU usage is required for this script. In 

other words, it should be configured on a machine where nvcc is installed. 

(4) Evaluate i-vector based personalisation: run_4_mfcc_ivec.sh 

This model is used as comparison to our proposel model. It consists of two stages, 

namely train_extract_ivec.sh and chain_mfcc_ivec.sh. The former prepares and 

i-vector system and extracts embeddings for the training and test folders. Then, the latter 

script is about training and decoding TDNN models with i-vector embeddings. 

(5) Evaluate x-vector based personalisation: run_5_mfcc_xvec.sh 

The proposed accent adaptation scheme is specified inside this script. Again GPU usage 

is required. There are three main stages, namely prepare_data_and_train_xvec.sh, 

run_xvec.sh and chain_mfcc_xvec.sh. 

https://github.com/vesis84/kaldi-io-for-python
https://www.kaldi-asr.org/doc/data_prep.html


GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

22 

 

 
1. prepare_data_and_train_xvec.sh: This script first arranges the data 

according to their accent types and then prepares neural network training 

examples using get_xvector_egs.sh script. Finally, it executes the training 

model of x-vector embeddings using the standard nnet3 library of Kaldi. 

2. run_xvec.sh: This script performs 512-dimensional x-vector extraction for the 

training and test splits. This is done by giving a segment file which identifies 

speech segments in the recordings. This operation is similar to the standard 

Kaldi binary ivector-extract-online.cc where x-vectors for every n frames 

are extracted by including all frames up to that point in the utterance. This is 

designed to correspond with what will happen in a real-time streaming 

decoding scenario. The x-vectors are output as an archive of matrices, indexed 

by utterance-id; each row corresponds to an x-vector. Finally, merge_arks.py 

file merges multiple x-vector frames defined in the segment file of an utterance 

into a single vector. 

3. chain_mfcc_xvec.sh: This is similar to the i-vector system except for the 

embedding type. Once we have arranged x-vector frames just like i-vectors, it 

is possible to provide them as an additional input inside the acoustic model by 

modifying the online-ivector-dir option of Kaldi's training script, 

steps/nnet3/chain/train.py. 

6. Conclusion 

This deliverable has presented current developments and results with respect to the 

personalised learning library for STT processing. The developments are based on the 

Kaldi toolkit. Personalisation is achieved thanks to the introduction of speaker information  

at the input of a DNN-based acoustic model. Several types of embeddings have been 

investigated for the speaker information: i-vector, initially proposed in the context of 

GMM-based speaker recognition, and x-vector, that has also been proposed for speaker 

recognition but relies on a DNN. In its initial version, the DNN x-vector extractor is trained 

to recognise speakers. Here, we have proposed and evaluated a variant using a DNN 

trained to identify non-native and accented speech. Finally, a semi-supervised learning 

process is presented with the goal of exploiting larger sets of untranscribed data in the 

training process. 

The proposed approaches are evaluated mainly on the Verbmobil data. Results are 

presented and discussed with respect to different aspects. The presented results show 

the benefit speaker embedding in acoustic modeling, whether the models are trained 

only on native speech data, or trained on both native and non-native speech data. The 

introduction of speaker embedding vectors leads to 10% to 15% relative WER reduction; 

and in most cases, x-vector embeddings yield better performance than conventional i-

vector embeddings. Evaluation on original speech and privacy transformed speech leads 

to a similar behavior. Experiments also show that including the speaker embedding leads 

to a significant improvement on speakers that are the most difficult to be recognised with 

the baseline acoustic model. Finally, preliminary results in the semi-supervised setting 

are promising, and open the way to including larger sets of untranscribed speech in the 

training data. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

23 

 

 
7. Bibliography 

[Celikyilmaz et al., 2015] A. Celikyilmaz, Z. Feizollahi, D. Hakkani-Tur and R. Sarikaya, 

“A universal model for flexible item selection in conversational dialogs,” in Automatic 

Speech Recognition and Understanding Workshop (ASRU). IEEE, 2015. 

[Dehak et al., 2011] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel and P. Ouellet, “Front-

End Factor Analysis for Speaker Verification”, in IEEE Transactions on Audio, Speech, 

and Language Processing, 19(4), pages 788–798, 2011. 

[Elfeky et al., 2016] M. Elfeky, M. Bastani, X. Velez, P. Moreno and A. Waters, “Towards 

acoustic model unification across dialects,” in Spoken Language Technology Workshop 

(SLT). IEEE, 2016. 

[Hess et al., 1995] W. Hess, K.J. Kohler and H.-G. Tillmann, “The Phondat-Verbmobil 

speech corpus,” in European Conference on Speech Communication and Technology, 

1995. 

[Hinton et al., 2012] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, 

V. Vanhoucke, P. Nguyen, T. Sainath and B. Kingsbury, “Deep neural networks for 

acoustic modeling in speech recognition: The shared views of four research groups,” 

Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012. 

[Huang et al., 2014] Y. Huang, D. Yu, C. Liu and Y. Gong, “Multi-accent deep neural 

network acoustic model with accent-specific top layer using the KLD-regularized model 

adaptation,” in Annual Conference of the International Speech Communication 

Association (INTERSPEECH). ISCA, 2014. 

[Jain et al., 2018] A. Jain, M. Upreti and P. Jyothi, “Improved accented speech 

recognition using accent embeddings and multi-task learning,” in Annual Conference of 

the International Speech Communication Association (INTERSPEECH). ISCA, 2018. 

[Karafiát et al., 2011] M. Karafiát, L. Burget, P. Matějka, O. Glembek and J. Černocký, 

"iVector-based discriminative adaptation for automatic speech recognition." in  Automatic 

Speech Recognition and Understanding Workshop (ASRU), IEEE, 2011. 

[Kitza et al., 2018] M. Kitza, R. Schluter and H. Ney, “Comparison of BLSTM layer 

specific affine transformations for speaker adaptation,” in Annual Conference of the 

International Speech Communication Association (INTERSPEECH). ISCA, 2018. 

[Ko et al., 2015] T. Ko, V. Peddinti, D. Povey and S. Khudanpur, “Audio augmentation 

for speech recognition,” in Annual Conference of the International Speech 

Communication Association (INTERSPEECH). ISCA, 2015. 

[Kumar et al., 2015] K. Kumar, C. Liu, K. Yao and Y. Gong, “Intermediate-layer DNN 

adaptation for offline and session-based iterative speaker adaptation,” in Annual 

Conference of the International Speech Communication Association (INTERSPEECH). 

ISCA, 2015. 

[LI et al., 2002] Y. Li, H. Erdogan, Y. Gao and E. Marcheret. « Incremental on-line feature 

space MLLR adaptation for telephony speech recognition.” In Seventh International 

Conference on Spoken Language Processing (ICSLP), 2002. 

[Li et al., 2018] B. Li, T. N. Sainath, K. C. Sim, M. Bacchiani, E. Weinstein, P. Nguyen, 

Z. Chen, Y. Wu and K. Rao, “Multi-dialect speech recognition with a single sequence-to-



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

24 

 

 
sequence model,” in International Conference on Acoustics, Speech and Signal 

Processing (ICASSP). IEEE, 2018. 

[Manohar et al., 2015] V. Manohar, D. Povey, and S. Khudanpur, “Semi-supervised 

maximum mutual information training of deep neural network acoustic models,” in Annual 

Conference of the International Speech Communication Association (INTERSPEECH). 

ISCA, 2015. 

[Manohar et al., 2018] V. Manohar, H. Hadian, D. Povey and S. Khudanpur, “Semi-

supervised training of acoustic models using lattice-free MMI,” in International 

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 

4844–4848. 

[Nagrani et al.] A. Nagrani, J. S. Chung, W. Xie and A. Zisserman, "Voxceleb: Large-

scale speaker verification in the wild." Computer Speech & Language, vol. 60, 2020. 

[Nguyen et al., 2017] T. S. Nguyen, K. Kilgour, M. Sperber and A. Waibel, “Improved 

speaker adaptation by combining i-vector and fMLLR with deep bottleneck networks,” in 

International Conference on Speech and Computer. Springer, 2017. 

[Peddinti et al., 2015] V. Peddinti, D. Povey and S. Khudanpur, “A time delay neural 

network architecture for efficient modeling of long temporal contexts,” in Annual 

Conference of the International Speech Communication Association (INTERSPEECH). 

ISCA, 2015. 

[Povey and Yao, 2011] D. Povey and K. Yao, “A basis method for robust estimation of 

constrained MLLR,” in International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP). IEEE, 2011. 

[Povey et al., 2011] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, 

M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer and K. 

Vesely, “The Kaldi speech recognition toolkit,” in Automatic Speech Recognition and 

Understanding Workshop (ASRU). IEEE, 2011. 

[Povey et al., 2016] D. Povey, V Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. 

Na, Y. Wang and S. Khudanpur, “Purely sequence-trained neural networks for ASR 

based on lattice-free MMI,” in Annual Conference of the International Speech 

Communication Association (INTERSPEECH). ISCA, 2016. 

[Saon et al., 2013] G. Saon, H. Soltau, D. Nahamoo and M. Picheny, "Speaker 

adaptation of neural network acoustic models using i-vectors." in Automatic Speech 

Recognition and Understanding Workshop (ASRU), IEEE, 2013. 

[Sarikaya et al., 2016] R. Sarikaya, P. A. Crook, A. Marin, M. Jeong, J.P. Robichaud, A. 

Celikyilmaz, Y.B. Kim, A. Rochette, O. Z. Khan, X. Liu, D. Boies, T. Anastasakos, Z. 

Feizollahi, N. Ramesh, H. Suzuki, R. Holenstein, E. Krawczyk and V. Radostev, “An 

overview of end-to-end language understanding and dialog management for personal 

digital assistants,” in Spoken Language Technology Workshop (SLT). IEEE, 2016. 

[Siniscalchi et al., 2013] S. M. Siniscalchi, J. Li and C.-H. Lee, “Hermitian polynomial for 

speaker adaptation of connectionist speech recognition,” in IEEE Transactions on Audio, 

Speech, and Language Processing, vol. 21, pp. 2152–2161, 2013. 

[Snyder et al., 2018] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey and S. Khudanpur, 

“X-vectors: Robust DNN embeddings for speaker recognition,” in International 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

25 

 

 
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 

5329–5333. 

[Tomokiyo and Waibel, 2003] L. Tomokiyo and A. Waibel, “Adaptation methods for non-

native speech,” in Multilingual Speech and Language Processing, 2003. 

[Tsao et al., 2011] Y. Tsao, R. Isotani, H. Kawai and S. Nakamura, “Increasing 

discriminative capability on MAP-based mapping function estimation for acoustic model 

adaptation,” in International Conference on Acoustics, Speech, and Signal Processing 

(ICASSP). IEEE, 2011. 

[Viglino et al., 2019] T. Viglino, P. Motlicek and M. Cernak, “End-to-end accented speech 

recognition,” in Annual Conference of the International Speech Communication 

Association (INTERSPEECH). ISCA, 2019. 

[Voxforge, 2020] “Voxforge: an open and free speech corpus for speaker recognition,” 

http://www.voxforge.org, accessed: 2020-03-12. 

[Waibel et al., 1989] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang, 

“Phoneme recognition using time-delay neural networks,” in IEEE Transactions on 

Acoustics Speech and Signal Processing, vol. 37, no. 3, pp. 328–339, 1989. 

[Weiss and Ellis, 2010] R. Weiss and D. Ellis, “Speech separation using speaker-adapted 

eigenvoice speech models,” Computer Speech & Language, vol. 24, no. 1, pp. 16–29, 

2010. 

[Xie et al., 2019] X. Xie, X. Liu, T. Lee and L. Wang, “Fast DNN acoustic model adaptation 

by learning hidden unit contribution features,” in Annual Conference of the International 

Speech Communication Association (INTERSPEECH). ISCA, 2019. 

[Xue et al., 2014] S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai and Q. Liu, "Fast adaptation 

of deep neural network based on discriminant codes for speech recognition." in IEEE 

Transactions on Audio, Speech, and Language Processing, vol. 22, pp. 1713-1725, 

2014." 

[Yang et al., 2018] X. Yang, K. Audhkhasi, A. Rosenberg, S. Thomas, B. Ramabhadran 

and M. Hasegawa-Johnson, “Joint modeling of accents and acoustics for multi-accent 

speech recognition,” in International Conference on Acoustics, Speech and Signal 

Processing (ICASSP). IEEE, 2018. 

[Yao et al., 2014] K. Yao, D. Yu, L. Deng and Y. Gong, “A fast maximum likelihood feature 

transformation method for GMM–HMM speaker adaptation,” Neurocomputing, vol. 128, 

pp. 145–152, 2014. 

[Yoo et al., 2019] S. Yoo, I. Song and Y. Bengio, “A highly adaptive acoustic model for 

accurate multi-dialect speech recognition,” in International Conference on Acoustics, 

Speech and Signal Processing (ICASSP). IEEE, 2019. 

[Zhang et al., 2013] X. Zhang, K. Demuynck and H. Van Hamme, “Rapid speaker 

adaptation in latent speaker space with non-negative matrix factorization,” Speech 

Communication, vol. 55, pp. 893–908, 2013. 

[Zhang and Woodland, 2016] C. Zhang and P. Woodland, “DNN speaker adaptation 

using parameterised sigmoid and relu hidden activation functions,” in International 

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. 



GA Nº: 825081 – COMPRISE – D3.2 Initial personalised learning library for speech-to-text       

26 

 

 
[Zhao et al., 2018] Y. Zhao, J. Li, S. Zhang, L. Chen and Y. Gong, “Domain and speaker 

adaptation for Cortana speech recognition,” in International Conference on Acoustics, 

Speech and Signal Processing (ICASSP). IEEE, 2018. 


