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Document summary

This deliverable is devoted to the design, implementation, and evaluation of transformations focus-
ing on deleting the citizen’s® identity and words carrying critical information, and model learning.
It extends the initial work that produced baselines of such transformations; which was delivered
in August 2019%. All software components of this deliverable are available to the public on the
COMPRISE git repository®. The proposed privacy-driven speech and text transformations will be
integrated in the COMPRISE Software Development Kit (SDK) Client Library, while the proposed
differentially private training tool implements a general training approach that can be used to
develop specific training components to be integrated in the COMPRISE Cloud Platform. In this
report, first, we recall in Section 1 the objectives of the work package, the choices that govern
software development and the status reached at the beginning of the period covered by this de-
liverable. Then, we focus in Section 2 on the evaluation of the privacy obtained by our proposed
approach. This is mainly a scientific exposition of the methodology we have followed. The outcomes
of this study led to improvements of the baselines. They are presented in Section 3 together with
experiments. A presentation of the new software library is given in Section 4.

3In this report we will use the terms “user” and “citizen” to refer to the person speaking to the dialogue system.
From the GDPR point of view, the citizen is the “data subject”.

4https://www.compriseh2020.eu/files/2019/08/D2.1.pdf

Shttps://gitlab.inria.fr/comprise
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T Eontext

Modern applications now allow the user’s voice to be the main means of interaction with computers
or smart objects. Technologies in voice interaction rely on machine learning models trained on
user’s data. This raises serious privacy concerns because voice is considered as biometric data and
carries a lot of private and sensible information. One of the objectives of COMPRISE is to design
a framework that enables the training and the use of the voice interaction tool in a private-by-
design manner. In COMPRISE, the voice interaction chain consists of two branches: the operating
branch and the training branch (see Figure 1). Privacy in the operating branch will be ensured
by running all computations on the user’s device or on a trusted personal server and sending only
the information needed to deliver the required service provided by the app. COMPRISE will also
focus on ensuring privacy in the training branch. To do so, in order to match the objective of Work
Package 2, we introduce two innovations that complement each other : a new privacy-driven speech
transformation and a new privacy-driven text transformation.

1.1 State-of-the-art after Deliverable D2.1

We have delivered in August 2019 a first version of the privacy-driven transformation tools, which
was in the form of Deliverable D2.16. Let us recall first the main achievements that were obtained
at that stage.

The global architecture is depicted in Figure 1. We have represented the main tasks and the
flow of information between them.

In the learning branch, the aim is to produce neutral voice and text data that will be used
for further improvement of the speech-to-text (STT), spoken language understanding (SLU), and
dialogue management components used in the COMPRISE system.

First the citizen voice is processed by an STT module to obtain the corresponding text marked
with temporal positions. The text is then processed by a text transformer that removes sensitive
words and expressions. The speech signal is also processed by a woice transformer to produce a
neutral voice. Thanks to the temporal positions and the neutral text, a secure voice builder is able
to reconstruct a new speech signal where sensitive patterns have been removed. So we provided the
following software developments in the previous period:

VoiceTransformer objects have two main methods. The first one, £it, is used to compute internal
parameters to fit the transformer to the user’s voice. Indeed, some transformations need to
be instantiated with specific features of the user’s voice. It needs a few utterances as input
and is used only once. Then transform performs a transformation to a target voice.

TextTransformer objects address two tasks: identifying the parts of the text to be transformed,
and performing the actual transformation into a neutral text.

SecureVoice Builder The mask_words_in_speech script in SecureVoice_Builder receives neu-
tral voice, neutral text and temporal positions of each sensitive word to reconstruct a secured
speech signal where sensitive words have been removed.

The temporal position of each word in the speech signal is provided by the STT module. How-
ever, for evaluation purposes, ground truth text can be used as input to the TexTransformer

Shttps://www.compriseh2020.eu/files/2019/08/D2.1.pdf
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instead of the STT text. In this case, the additional package align-s2t can be used to obtain
the temporal positions of the words from the ground truth text in the speech signal.

The mask_words_in_speech script gives fine control over the type of words and named entities
(NEs) that can be finally masked in the speech signal. Hence, SecureVoice Builder also
includes an optional helper script mask words_in_text which produces neutral text with the
same type of words and named entities that are masked in the speech signal. Again, this
feature is meant for detailed evaluation purposes.

Two specific functions are producing the text and the voice transformers. They are represented
in the blue frames on the left of the diagram.

VT Builder takes as input a dataset containing speech data and speaker identities and produces a
voice transformer.

TT_Builder is responsible for selecting the appropriate transformation strategy to use inside the
TextTransformer and for continuously improving the models used by the latter. At the
current stage, however, the TextTransformer uses fixed, external models only, pushing the
need for a TT_Builder to a later stage in the project.

1.2 Contents

The software tools delivered in August were at an early stage and the evaluation of privacy and
the quality of the privacy measures had not been studied in depth. During the period covered
by this deliverable (M9-M17), we have addressed the problem of assessing the privacy resulting
from the different methods proposed in our Voice and Text Transformers. Our study is reported
in Section 2. We have identified the context of the usage of voice-enabled technologies as a rich
source of information and a mid-term objective to improve our transformers. We have taken into
account some background knowledge an attacker may have in the context of COMPRISE. We have
rigorously studied different measures in the literature (e.g., in the speaker identification domain)
and their relevance for the assessment of privacy. Finally, we have proposed a first differentially
private approach to text transformation giving a more comprehensive trade-off between utility and
privacy for text transformation.

Based on our observations, we have proposed improvements of our privacy driven transforma-
tions (see Section 3). Voice transformers have been improved and a new private training method
for deep learning is presented. We have also started to address the problem of gender obfuscation,
following our objective to take into account more traits. On the multilingual side, we have started
to study the case of the Latvian language.

2 Evaluation of privacy

2.1 Privacy in speech technologies

Following the initial work done in the first period about categorisation of personal data, COMPRISE
partner ROOT has proposed in [MJ20] an overview of how personal data recorded by voice-enabled
systems can be identified through the categorisation of personal information and the analysis of
context. ROOT has shown how these methods can be used to design private-by-design voice-based
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solutions that intend to neutralise personal data and information/words that may reveal private
information.

Different sources of information are analysed: spoken content, speaker’s voice, background
sounds, and usage metadata (geolocation, application type, etc.). Each source is captured lo-
cally on the device and represents either a possible leak of private information or a way to improve
the distinction between private or non private data.

The study reveals that the context of use at the moment a user interacts with the system is of
major importance to disambiguate and identify personal data. Context can be related to usage,
cultural, linguistic and other combinations of different elements. For instance, a hump for the British
is a state of depression or annoyance, while for Americans it could mean making a vigorous effort.
In that case, knowing either the cultural and linguistic context or even the usage context (e.g., a
medical application) is clearly helpful. The paper depicts many situations where contextualisation
is of major importance with respect to personal data.

In standard applications where data is processed in the Cloud by distrusted third parties, the
exploitation of context information is of course a source of privacy leak. Hence, the paper also
advocates for more decentralised processing, following the architecture and implementation choices
made in COMPRISE.

This work enlightens the advantages of the choices made in the definition of the architecture of
COMPRISE. It also gives an important direction of the future development that the project may
follow.

2.2 Taking into account the attacker’s knowledge

In [Sri+20], we investigate anonymisation methods based on voice conversion (VC). In contrast
to prior work, we argue that various linkage attacks can be designed depending on the attackers’
knowledge about the anonymisation scheme. We compare two frequency warping-based conversion
methods presented in Deliverable D2.1 (VTLN and VoiceMask) and a deep learning based method
(called Disentangled Representation) in three attack scenarios. The utility of converted speech
is measured via the Word Error Rate (WER) achieved by STT, while privacy is assessed by the
increase in Equal Error Rate (EER) achieved by state-of-the-art i-vector or x-vector based speaker
verification. Our results show that voice conversion schemes are unable to effectively protect against
an attacker that has extensive knowledge of the type of conversion and how it has been applied,
but may provide some protection against less knowledgeable attackers.

As opposed to past studies that only considered weak attack scenarios where the attacker is
unaware that an anonymisation method has been applied to the data, we consider different linkage
attacks depending on the attacker’s knowledge of the anonymisation method. At one end of the
spectrum, an Ignorant attacker is unaware of the speech transformation being applied, while at the
other end an Informed attacker can leverage complete knowledge of the transformation algorithm
and its parameter values. A Semi-Informed attacker may know the voice transformation algorithm
but not its parameter values. In our experiments, we evaluate three VC methods with different
target speaker selection strategies in various attack scenarios to study unlinkability in the spirit
of ISO/IEC 30136 standard [ISO17]. In each scenario, we assess how well each method protects
the speaker identity against attackers that leverage state-of-the-art speaker verification techniques
based on i-vectors [Deh+10] or x-vectors [Sny+18] to design linkage attacks. We also report
the WER achieved by a state-of-the-art end-to-end STT system [Wat+18]. All experiments are
conducted on the LIBRISPEECH dataset [Pan+15].
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In this study, we consider that the VC function and the sets of possible parameter values are
known to all users. Each user captures his/her voice on his/her device and applies a VC scheme
locally before sending it to the Cloud. In the threat model we consider, an attacker accesses the
converted utterances (called trial utterances) and performs a linkage attack to identify which ones
are spoken by a particular user. To this end, we assume that the attacker also has access to a small
amount of enrollment speech from this user (and potentially some additional public resources, such
as benchmark speech processing datasets to train generic speaker models).

We apply three VC methods mainly parameterised by the choice of a target speaker.

e VoiceMask ([Qia+18]) is a frequency warping method based on the composition of a log-
bilinear function and a quadratic function, expressed by two parameters (called « and ).

e VTLN-based VC ([SN03]) represents each speaker by a set of centroid spectra extracted using
the CheapTrick [Morl5] algorithm for k& pseudo-phonetic classes. Classes of a source speaker
are warped using a power function to the classes of a target speaker.

o Disentangled Representation based VC ([CL19; UVL17]) is based on a neural network trans-
formation and uses a speaker encoder and a content encoder to separate the factors of variation
corresponding to speaker and content information.

We consider three possible target selection strategies for the three VC methods above, which
can be seen as key ingredients of a “private-by-design” speech processing system (see Figure 2).

e In strategy const, the VC function is constant across all users and all utterances. This means
choosing a unique target speaker and, in the case of VoiceMask, fixed values for o and 3.

e In strategy perm, the conversion parameters are chosen at random once by each user. In other
words, when a user downloads the VC module on his/her device, he/she selects a personal
target speaker and, in the case of VoiceMask, personal random values for o and £.

e Finally, in the random strategy, each time a user applies VC to an utterance, a random set of
parameters is drawn, i.e., a random target speaker is selected and, in the case of VoiceMask,
random values are drawn for a and 3.7

Speakers Targets Speakers Targets Speakers Targets
spl; | | spk, spky || spk} spk; "= spk)
\ / \ / /
spkoss — spkj Spkose spky spky spky
/ spky, . ><1 spk;C : Spk;€
spk,; spk,; spk,;

Figure 2: Strategies const, perm and random. Utterances are small green balls, arrows show the
mapping to select a target speaker.

"The random choice of the parameters is a key component to achieve anonymisation in the VoiceMask method,
therefore only random strategy was evaluated.
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We have implemented several attackers depending on the choice of the VC algorithm and the
target selection strategy as well as the extent of the attacker’s knowledge (Ignorant, Semi-Informed
or Informed, see Figure 3). Our Ignorant attacker is unaware of the VC step: he/she simply trains
x-vector/i-vector models on the untransformed training set, and applies them to the untransformed
enrollment set. Our Semi-Informed attacker knows the VC algorithm and the target selection
strategy (const, perm or random) but not the particular choices of targets. He/she applies this
strategy to the training and enrollment sets by drawing random target speakers from the subset of
100 target speakers used by the VC method (we assume that the value of k¥ in VTLN is known to
the attacker). As a result, the training and enrollment data are converted in a similar way as the
trial data, but the target speaker associated with every speaker in the enrollment set is typically
different from that associated with the same speaker in the converted trial set. Finally, our Informed
attacker has access to the actual VC models and target choices used to anonymise the trial set, so
it converts the training and enrollment sets accordingly.

Original speech Anonymized speech Attackers

(voicemask ) (__VTLN ] (Disentangled Rep-]‘_?\—)
_I—) Voice conversion :

_EZ::::::::::::::::::::::::: -3 Semi-Informed
- [ CONST H PERM J[ RANDOM l ] Attacker knowledge

spk - utt ANONYMIZATION POOL
pDB : : . ’ 3l Informed
Target selection strategies

Figure 3: Schema for speaker anonymisation and three types of linkage functions designed as
attackers based on increasing degrees of knowledge. The anonymised speech is observed by the
attackers (black arrows). The green dotted arrows indicate partial knowledge while red solid arrows
indicates full knowledge.

H

In the COMPRISE setting, we can think that an Ignorant attacker is unaware that speech has
undergone VC based transformation, the Semi-Informed attacker has studied the code of the VC
method employed by the user, and the Informed attacker has hacked the user’s device and can get
internal values at any time.

Results We first train and apply the STT and speaker verification systems on the original (un-
transformed) data for baseline performance. The EER is used to measure privacy® and the WER is
used to measure the utility of the data after transformation. We obtain an EER of 4.61% and 4.31%
for i-vector and x-vector based speaker verification, respectively, and a WER of 9.4% for STT. Ta-
ble 1 gives the WER obtained for each VC method, which we use as a proxy for the usefulness of the
converted speech. Note that there is no difference between converted data in different attack sce-
narios, hence the WER does not depend on the attacker. VoiceMask and VTLN-based VC achieve
reasonable WER compared to the untransformed data, while the disentangled representation based
VC yields an unreasonably high WER.

Tables 2 and 3 present the EER for x-vector and i-vector based speaker verification for the
three attackers and the various VC methods and target selection strategies. The Informed attacker

80ther measures of privacy are evaluated in the following section.
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VoiceMask VTLN-based VC Disentangl.-based VC
Subset | / Strategies — random const | perm | random | const | perm | random
test-clean 18.1 19.8 18.4 15.9 41.5 23.7 115.1

Table 2: EER (%) achieved using x-vector based speaker verification.

VoiceMask VTLN-based VC Disentangl.-based VC
Attackers | / Strategies — random const | perm | random | const | perm | random
Informed 5.01 4.71 3.91 6.32 4.71 0.20 5.52
Semi-Informed - 12.84 | 23.37 6.32 13.64 | 43.03 5.42
Ignorant 28.69 24.27 | 30.99 27.38 27.68 | 32.20 30.59

Table 3: EER (%) achieved using i-vector based speaker verification.

VoiceMask VTLN-based VC Disentangl.-based VC
Attackers | / Strategies — random const | perm | random | const | perm | random
Informed 8.22 6.22 10.23 9.84 4.71 0.20 11.03
Semi-Informed - 18.25 | 31.49 18.76 15.65 | 43.93 10.53
Ignorant 50.55 26.08 | 49.15 49.15 49.95 | 47.74 49.85

achieves similar or even slightly lower EER than the baseline. This indicates that, when the attacker
has complete knowledge of the VC scheme and target speaker mapping, none of the VC methods
is able to protect the speaker identity. Fortunately, an attacker with such complete knowledge is
unrealistic in practical cases, including in COMPRISE.

For the more realistic Semi-Informed attacker, we observe that strategy perm is quite effective
in protecting privacy and shows the highest gains in EER. This is due to the fact that the target
speaker in the enrollment data may not be the same as the one in trial, hence greater confusion is
induced during inference. We also notice that strategy random is not much affected by the change
of speaker mapping, which is intuitive because in this case the utterances are already being mapped
randomly to different speakers. Such mapping would be ineffective due to averaging of randomness.
Strategy const is also slightly affected by the change of mapping but the effect is not as significant
as the perm strategy.

Conclusion We investigated the use of VC methods to protect the privacy of speakers by con-
cealing their identity. We formally defined target speaker selection strategies and linkage attack
scenarios based on the knowledge of an attacker. Our experimental results indicate that both as-
pects play an important role in the strength of the protection. Simple methods such as VTLN-based
VC with appropriate target selection strategy can provide reasonable (but not complete) protec-
tion against linkage attacks with partial knowledge. Section 3 reports new contributions to further
improve the level of protection.

10
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2.3 Linkability and other privacy measures

The classical measure used in many studies in speaker verification is the EER. A speaker verification
system performs a binary decision to detect whether a given speaker in the enrollment set is the
same (genuine) or not (impostor) as the one who uttered a given trial utterance. The genuine vs.
impostor decision is achieved by comparing a similarity score with a decision threshold. Modifying
this threshold modifies the false positive and false negative rates, and the EER corresponds to the
value where those two rates are equal. But is EER a good measure for privacy? This question has
motivated a study where we have analysed and compared several alternative measures that could
be more relevant in the context of privacy.

We have considered a representation of speech data or a representation of speakers by means
of deep neural network based speaker embeddings called x-vectors [Sny+18]. It is known that x-
vectors perform very well for speaker identification and verification, but also for many other speech
and speaker features [Raj+19]. Following the study in Section 2.2, we have performed our analysis
using the perm, const, random strategies for the three voice conversion methods VILN, VoiceMask
and Disentangled Representation and a fourth method detailed in Section 3.1, according to the
different levels of knowledge of the attacker.

Indistinguishability and re-identification A first approach was to study the embedding space
of x-vectors. We started with the distinguishability of the embeddings of utterances of the same
speaker. We measured the proportion of utterances that have at most a certain precision at top-
k, where the top-k represents the k-closest utterances according to the Euclidean distance. In
summary, we observed a larger indistinguishability in the perm case, however, we noticed that in
any case almost all utterances have a precision at 100% at top-1. The same observation was made
in re-identification experiments where essentially, we measured the anonymity size, that is the rank
of a correct identification. In that case, identification is based on the probability of being the same
speaker, using a notion of similarity computed by a normalised Gaussian kernel.

Linkability A second approach was to study linkability. By definition, linkability means that an
attacker can sufficiently distinguish whether two items (in our case utterances) are related or not.
Here, the relation is formally given by a linkage function that produces a score s that informs on
the strength of the relation between the two items (in our case, it informs on the similarity between
the speakers for those utterances). We study D, (s) as the measure of how much a score s tells us
that two items are linkable (i.e., belong to the same speaker). The computation follows [Gom+17]
and D, (s) is close to 0 when the score cannot distinguish mated (i.e., same) and non-mated
(i.e., distinct) speakers. Also, rather than providing a single measure, this approach offers a full
range of evaluations for all score distributions. We conducted experiments to study the linkability
between trial and enrollment utterances on the one hand and among trial utterances on the other
hand, where the score s was computed by Probabilistic Linear Discriminant Analysis (PLDA) ? of
x-vectors. In summary, the results are consistent with the above.

Cost sensitive measure In certain applications, the cost of a false negative differs from the cost

of a false positive. The C})' measure provides an application-independent measure by integrating
over all costs. The decision is based on the log-likelihood ratio of the posterior probability of having

9We have also shown that the PLDA score is more relevant as a linkage function than Euclidean or cosine distance
when considering distances between x-vectors.

11
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Figure 4: Experimental comparison of four privacy measures: EER (top left), top-k (k = 180, top
right), linkability (bottom left) and Ci® (bottom right) on the different scenarios and transformers.
The four transformation methods are denoted as pwve (VILN), dar (disentangled representation),
vinl (VoiceMask), and VPC (see Section 3.1).

a score given a mated or non-mated couple of items and the decision threshold takes the costs into
account.

Summary All the measures we have tested give consistent observations. This is illustrated in
Figure 4. Privacy is well preserved in the ignorant case. In the semi-informed case, the considered
VTLN, disentangled representation based VC, and VoiceMask transformations do increase the level
of privacy compared to original untransformed data, but the results do not allow us to claim
complete protection in the considered experimental setting. The disentangled representation based
VC approach provides the best level of protection but it seems unusable because the resulting speech
intelligibility and WER are poor. To address this issue, we developed an improved transformation,
which we present in more detail in Section 3. As an initial preview of the results of this new
transformation, the reader can observe its performance in the last bars (labelled VPC) of the
histograms in Figure 4.

12
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Crucially, all experiments were done on a small set of speakers, which implies a very hard
anonymization problem. Of course, the more speakers in the trial set, the greater the chance of
reaching an acceptable level of privacy. The results should therefore be considered as relative results
allowing us to compare different transformation schemes and not as absolute privacy guarantees.

Additionally, this large set of experiments on different measures gave us some insights on mea-
suring privacy in real cases. We advocate for the use of C2 and Linkability. Indeed, even though
the results in our case are consistent with EER, we observe that they are more grounded, and
provide more information by taking into account a large spectrum of calibrations and applications.
The conducted experiments also allowed us to conclude that PLDA is more meaningful than the
Euclidean or the cosine distance to compute distances in the x-vector space.

2.4 Evaluation of differentially private text transformations

In Deliverable D2.1, we presented different ways of hiding private information in dialogue transcripts
by replacing user sensitive words with placeholders or their surrogates of the same type [THGO04].
We already showed that same-type replacements are more appropriate for Spoken Language Under-
standing (SLU) tasks because they led to the least drop in performance after text transformation.
Here, we formulate different hiding strategies in terms of differential privacy and compare their
performance-privacy trade-off. We verify this by applying the state-of-the-art deep learning model
to train an SLU task where the word features are obtained from BERT embeddings [Dev+18] before
they are passed into a Bidirectional Long Short-Term Memory neural network with a Conditional
Random Field layer (BiLSTM-CRF) [HXY15] for named entity recognition (NER).

Definition 2.1. (Differential Privacy). A randomised algorithm M is (g,0) private with domain
D if for any measurable set S € Range(M) and for all neighbouring datasets D1 and Do differing
on at most one data point, we have

PrM(D;) € S] < exp () PriM(D3) € S]+ 6 (1)

An (g,0) differentially private algorithm guarantees that the absolute value of information leak-
age is bounded by ¢ with a probability of at least 1 — §. Therefore € controls the level of privacy
protection and so is called privacy loss. The lower ¢, the greater the privacy.

We proceed by introducing the privacy loss ¢ into text replacement methods. To do so, we
employ a similar technique to the randomised response [War65]. It was developed in social science
to guarantee a degree of plausible deniability to any individual while collecting useful statistics
from a population. We consider a text replacement strategy = : T — T, where m(¢|t’) is the
probability of replacing ¢’ in the original text with ¢. Let p be the probability that we apply the
text replacement strategy to a given text. We randomise m further as shown in this algorithm.

Algorithm 1: Randomised response text replacement.

Input: dataset D, text replacement policy m, probability parameter p.
for ¢’ in sensitive data do
r~U(0,1) if r < p then
| replace t' with t ~ w(¢|¢')
end
end

13
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Lemma 2.1. If text replacement strategy w in Algorithm 1 is independent from source words, i.e.,
7(t|t') = 7 (t), then Algorithm 1 is (e,0) differentially private where:

1—p+pmn(t)
pl) @

To prove this lemma, we consider two neighbouring datasets Dy and Do — for instance Ds is
the dataset where one token ¢’ has been replaced by ¢t while D; has a token ¢’ that can either be
replaced or unchanged, which implies that the datasets differ by at most one element — and we
can compute the privacy loss as

€ = max log

PrM(Dy) =]
e=log —/—F——— 3
& BrM(Dy) = 1] )
where t is the observed word in the replaced text. Note that replacement policies are independent
from original words. So, if the original word in the two datasets is not equal to ¢ then we have:
PrM(Dy) = 1] _ pa(t|Dy)

Pr[M(D,) =t]  pn(t|Ds) =1 (4)

On the other hand if the original word in one of the datasets say D; is equal to ¢ then:

Pr[M(Dy) =t] 1—p+pn(t) %)

PrM(Dz) = i] pm(t)
Combining the two cases, we obtain Equation (2). It is worth mentioning that naive text replace-
ment corresponds to p = 1 and therefore has a zero privacy loss. Since the text transformation
depends on the automatic identification of privacy sensitive entities, the quality of the identifica-
tion can be quantified by p. If all sensitive information are correctly identified, p = 1 and € = 0,
otherwise, p < 1 and € > 0, and in both cases, we can estimate the privacy loss due to the imper-
fect identification of privacy sensitive entities. Also, we can tune the parameter p to get a better
performance-privacy trade-off depending on the SLU task.

Experimental Setup We evaluated the performance of the proposed text transformation on
the VERBMOBIL [Wah00] NER dataset (introduced in Deliverable D2.1) using the Flair [ABV18]
implementation!®. The NER dataset consists of 19,151 training, 2,846 development, and 5,230
test sentences with 5 private token categories or named entities: PER (Personal names), ORG
(organisation), LOC (location), DATE, and TIME. The hyper-parameters of the model are: a
768-dimensional embedding layer (for BERT), a BiLSTM layer size of 256 in each direction, an
adaptive learning rate of 0.1 (the learning is halved when development data loss does not improve),
a mini-batch size of 32, and a maximum number of epochs of 50.

Results We show that the performance of replacing tokens by surrogates of the same type can
be improved by tuning the parameter p described in Equation (2). For example, by setting p = 0.9,
we can improve the Fl-score by around 2% for the same-type replacement as shown in Table 4,
thus, we can control the privacy-utility trade-off. For the same-type replacement experiments,
we replace a named entity ¢’ by another named entity ¢ of the same class based on their relative
frequency distribution 7(t) in the corpus. In Table 4, we evaluate the performance of the same-type
replacement strategy as a function of p based on the differential privacy loss € computed according
to Equation (2) which is the maximum of the privacy losses of all named entity classes.

1O0https://github.com/zalandoresearch/flair
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Table 4: Differential privacy guarantees and utility achieved on the VERBMOBIL corpus by the text
replacement strategy in Algorithm 1. With a probability p = 0 of replacing a sensitive attribute, the
level of privacy protection is identical to the original data. When p = 1, we apply the word-by-word
replacement strategy, i.e., same-type replacement.

D 0 05 09 1.0
€ 00 8.95 6.75 0.0
Fl-score 89.1 86.4 81.7 79.8

3 Improvement of privacy driven transformations

3.1 New privacy driven speech transformation

COMPRISE members are involved in the organisation of the Voice Privacy Challenge (VPC). !
The challenge aims to develop anonymisation solutions which suppress personally identifiable in-
formation contained within speech signals. At the same time, solutions should preserve linguistic
content and speech quality/naturalness. The challenge will conclude with a session/event held in
conjunction with Interspeech 2020 at which challenge results will be made publicly available.

We have joined efforts with Avignon Université, EURECOM, and NII to produce a clear defini-
tion of an attacker scenario, evaluation metrics and baselines for speech privacy. In this section, we
present a baseline that is now also part of the COMPRISE library as a new voice transformer method.
The VPC system is inspired from the speaker anonymisation method proposed in [Fan+19] and
shown in Figure 5. Anonymisation is performed in three steps:

e Step 1: Feature extraction: extract the speaker x-vector [Sny+18], and the fundamental
frequency (F0) and bottleneck (BN) features from the original audio waveform.

e Step 2: X-vector anonymisation: anonymise the x-vector of the source speaker using an
external pool of speakers.

Mhttps://wuw.voiceprivacychallenge.org/ .

FO
FO
extractor l l
[1] BN features [ 3] speech Mel-fbanks |41 Neural
— ASR AM synthesis AM source-filter F——
V! (NSF) model
LI Xx-vector Anonymized x-vector ‘ .
Input speech e)%-‘:f:ttg: Anonymization Anonymized

speech

Pool of x-vectors

Figure 5: VPC anonymisation system.
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e Step 3: Speech synthesis: synthesise the speech waveform from the anonymised x-vector
and the original BN and F0 features using an acoustic model and a neural waveform model.

In order to implement these steps, four different models are required as shown in Figure 5. De-
tails for training these components are presented in Table 5. More details about the implementation
can be found in the COMPRISE git repository and in the challenge repository'2.

In Step 1, to extract BN features, an STT acoustic model (AM) is trained. We assume that these
BN features represent the linguistic content of the speech signal. The STT AM has a factorised
time delay neural network (TDNN-F) model architecture [Pov+18; PPK15] and is trained using
the Kaldi toolkit [Pov+11]. To encode speaker information, an x-vector extractor with a TDNN
model topology is also trained using Kaldi.

In Step 2, for a given source speaker, a new anonymised x-vector is computed by averaging a
set of candidate x-vectors from the speaker pool. The candidate x-vectors for averaging are chosen
in two steps. First, for a given x-vector, the N farthest candidates in the speaker pool are selected.
Second, a smaller subset of N* x-vector candidates from this set are chosen randomly!3.

In Step 3, two modules are used to generate the speech waveform: a speech synthesis AM that
generates Mel-filterbank features given the F0, the BN features, and the anonymised x-vector, and
a neural source-filter (NSF) waveform model [WTY19] that produces a speech waveform given the

2nttps://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020
13By default, the following parameter values are used: N = 200 and N* = 100; and PLDA is used as the distance
between x-vectors.

Table 5: VPC anonymisation system: models and corpora. The model indexes are the same as in
Figure 5. Superscript numbers represent feature dimensions.

’#‘ Model ‘Description Output features Training dataset
TDNN-F
ASR  |Input: MFCC* + i-vectors'® BN?°¢  features LIBRISPEECH:
1 | (STT) |17 TDNN-F hidden layers extracted from train-clean-100
AM Output: 6032 triphone ids the final hidden layer | train-other-500
LF-MMI and CE criteria
TDNN
X-vector Input: MFCC*® speaker
2 7 hidden layers + 1 stats pooling layer VOXCELEB: 1, 2

extractor x-vectors®!?

Output: 7232 speaker ids

CE criterion

Autoregressive (AR) network

Speech |Input: FO!'4+ BN2?54x-vectors®'?

3 |synthesis |FF * 2 + BLSTM 4+ AR + LSTM * 2 Mel-filterbanks®°

AM + highway-postnet

MSE criterion

NSF sincl-h-NSF in [WTY19)

4 model Input: FO! + Mel-fbanks®® + x-vectors®'? | speech waveform
STFT criterion

LiBRITTS:
train-clean-100

LiBRITTS:
train-clean-100

LiBRITTS:

Pool of speaker x-vectors train-other-500
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Table 6: Speaker verification performance achieved by the VPC transformation.

Anonymization Development Test
Dataset Gender Enroll |  Trial EER (%) | Cii" | EER (%) | Co”
- original 8.67 | 0.304 7.66 | 0.183
Female original o 50.28 | 0.997 1854 | 0.996
LBRISPEECH anonymized | CLOmYIIze 35.09 | 0.876 29.74 | 0.797
) original 1.24 | 0.034 L1l | 0.041
Male original : 58.39 | 0.998 53.23 | 0.999
anonymized | 2nonymized 29.66 | 0.806 32.52 | 0.835
L original 2.86 | 0.100 1.80 | 0.169
Female original o 50.03 | 0.088 48.87 | 0.999
VOTK anonymized | OnYmze 29.48 | 0.814 3421 | 0.884
.. original 1.44 | 0.052 2.07 | 0.072
Male original : 55.33 | 1.000 53.73 | 1.000
anonymized | Anonymized 26.10 | 0.756 25.83 | 0.743

Table 7: STT performance achieved by the VPC transformation.
| Dataset [Anonymization|Dev. WER (%) | Test WER (%) |

LIBRISPEECH original 3.83 4.14
anonymized 6.50 6.77

original 10.79 12.81

VCTK anonymized 15.50 15.53

FO0, the anonymised x-vector, and the generated Mel-filterbanks. Both models are trained on the
same corpus (LibriTTS-train-clean-100).

The resulting privacy-utility trade-off is evaluated on two different datasets: LIBRISPEECH and
VCTK [VYM19]. Speaker verification results are provided in Table 6, and STT results in Table 7.
Comparing the LIBRISPEECH results in Table 6 with those in Table 2 and looking at Figure 4, we
see that the level of privacy protection resulting from the VPC transformation is comparable to
that achieved by the VTLN, disentangled representation based VC, and VoiceMask transformations
in the case of an ignorant attacker, but it is much better in the case of a semi-informed attacker,
which translates into greater privacy guarantees for users in practice. Also, the VPC transformation
results in smaller distortion of the speech signal, and therefore better STT performance.

Here also, all experiments have been conducted on a small set of speakers. The obtained EER
values should be considered as relative results allowing us to assess the superiority of the VPC
transformation, rather than as absolute privacy guarantees.

3.2 Differentially private training for deep learning

Deep neural networks trained with a massive amount of data have enjoyed great success in a wide
variety of domains. Often, these datasets contain sensitive and highly private information such as
medical records of patients. Differential privacy [DR+14] is a well-known mechanism for training
machine learning models to prevent exposure of private information in the training dataset. The core
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idea is randomising the non-private training algorithms by injecting calibrated noise. Differential
privacy has been integrated into deep learning in [SS15; Aba+16] to tackle privacy issues. The
proposed method in [Aba+16] is based on clipping and adding random noise to the gradient at
every iteration of stochastic gradient descent (SGD). This differentially private SGD (DPSGD)
technique along with the moments accountant method for tracing the privacy loss has enabled
training of deep neural network under modest privacy losses with a manageable reduction in the
model’s test accuracy. Nevertheless, DPSGD results in a large drop in accuracy under a low privacy
loss.

To address this problem, we first study how injecting random noise degrades a non-differentially
private deep learning model and augment the model with normalisation layers (e.g., batch normali-
sation or layer normalisation) to increase its robustness to noise. We hypothesise that this increased
robustness is a consequence of the scale invariance property of normalisation operators. Building on
this observation, we propose a new algorithmic technique for training deep neural networks under
very low privacy losses by sampling weights from Gaussian distributions and utilising batch or layer
normalisation to limit the drop in performance. We refer to this new algorithm as Scale Invariant
DPSGD (SI-DPSGD).

Noise and Normalisation A crucial part of any privacy-preserving learning mechanism is adding
noise to the training procedure. We investigate how random Gaussian noise affects the performance
of a neural network in the presence of normalisation layers. More specifically, we sample the weights
from a Gaussian distribution N (u, 0%) with learnable mean parameters p and constant variance o2.
This approach is very similar to variational Bayesian learning of neural networks [Blu+15], where
weights are represented by probability distributions rather than a deterministic value. Unlike the
Bayesian approach, whose goal is to learn the true posterior distribution of the weights given the
training data, here the noise is introduced via an ad-hoc distribution.

Batch normalisation [IS15] and layer normalisation [BKH16] are introduced to speed up training
by regularising neurons dynamics via mean and variance statistics and reducing variance in the
input to each node. Normalisation techniques in combination with other architecture innovations
like residual connections [He+16] make training of very deep networks feasible. Batch and layer
normalisation both ensure zero mean and unit variance in the output of a layer but using different
statistics. Batch normalisation (BN) calculates the mean and variance statistics across samples
in a mini-batch for each neuron independently, while layer normalisation (LN) standardises each
summed input to a node utilising the statistics over all hidden units.

To test our hypothesis, we add normalisation layers to various deep neural netork models and
compare them against the unnormalised baselines. We train some standard fully-connected as well
as convolutional neural networks with noisy weights on MNIST [LeC+98a]. MNIST is a common
dataset for the assessment of differential privacy properties of deep learning models [Aba+16]. In
particular, we examine LeNet-300-100 and LeNet-5 [LeC+98b] and variants of ResNet [He+16] and
VGG [SZ14]. All models are implemented in Pytorch [Pas+19] and trained with the Adam optimiser
[KB14]. We train each model with different levels of noise ¢ = {0,0.01,0.1,1,2}. Hyperparameters
are tuned by grid-search for each value of noise separately using 8% of training data as the held-out
validation set.

Table 8 shows the accuracy of augmented models on the MNIST test dataset averaged on
ten runs against unnormalised baselines, trained with the reparameterisation trick. The BN/LN
prefixes in this table denote models that are obtained by adding batch normalisation or layer
normalisation layers to the original architectures, respectively. It is evident from this experiment
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Table 8: MNIST test-set accuracy (%) £ standard error (%) achieved by different models when
injecting noise to the weights.

Noise Level (o)
0 0.01 0.1 1 2

LeNet-300-100 98.20+0.07 97.704+0.30 96.984-0.12 Random Random
BN-LeNet-300-100  98.204+0.10 98.10+£0.10 98.074+0.11 98.07+0.12 98.1340.08
LN-LeNet-300-100  98.04+0.16 98.004+0.10 98.084+0.14 98.0440.09 98.0340.17

Model

LeNet-5 99.204+0.02 98.94+0.07 98.40+0.03 Random Random
BN-LeNet-5 99.20+0.08 99.214+0.05 99.18+0.06 99.2440.04 99.2540.07
LN-LeNet-5 99.16+£0.08 99.1440.06 99.13£0.07 99.214+0.05 99.1940.07

that all augmented models are tolerant to noise while the baselines are not. Indeed, the accuracy of
augmented models does not change for a large range of noise levels thanks to the scale invariance
property of the networks. That is, scale invariance keeps the output of the model intact when noise
is added to the weights and protects the network. On the other hand, baseline models are very
sensitive to small weight perturbations. Notably, disturbing the weights by a small noise in the
order of o = 0.3 results in a complete drop in performance down to that of random prediction.

We observe a similar result on a natural language text classification task. We trained a Bil-
STM model with one dense layer (DL) with/without layer normalisation (LN) on the AG NEwS
corpus 4, a popular text classification dataset with 4 categories of news: World, Sports, Business,
and Sci/Tech. Each class has 30,000 training examples and 1,900 test examples. In total, the
dataset consists of 120,000 training examples and 7,600 test examples. We further split the training
examples into training/validation sets where we use 96,000 examples for training the models and
24,000 for validation (e.g., early stopping and learning rate tuning). We trained the models with
different noise levels o for the same number of epochs (i.e., 25). The larger the noise, the more
epochs are needed to maintain the accuracy of the baseline model. Our results on the language
data in Table 9 suggest that layer normalisation makes the BiLSTM-DL model robust to noise
with minimal drop in accuracy (1—7%), unlike the BILSTM-DL model without layer normalisation
that exhibits a large drop in accuracy (65%) with a noise level o = 2.0. Our findings enable us to
conclude that the LSTM and CNN architectures are robust to noise when equipped with layer and
batch normalisation.

DPSGD Differential privacy has been integrated into deep learning in [SS15] and subsequently in
[Aba+16] for the setting where the adversary has access to the network architecture and the learned
weights, f(0*,.). In particular, [Aba+16] preserves privacy by adding noise to the SGD updates,
leading to differentially private SGD (DPSGD). More precisely, to make the learning private, the
authors of [Aba+16] update the weights at each training iteration as

L
9t+1 «— 0,5 — % (Z Vﬁ(@t,xl) + 7") N (6)

i=1

Mhttp://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Table 9: AG NEWS test accuracy with noisy weights for a variety of models. We see the same
pattern as the vision dataset where models augmented with layer normalisation are very robust
against noise.

Noise Level (o)
0 0.01 0.1 1 2

BiLSTM-DL 89.34% 89.57% 89.01% 66.32% 24.76%
LN-BiLSTM-DL 89.34% 88.87% 88.62% 85.74% 82.41%

Model

where L is the loss function, 7 is the learning rate and r is sampled according to Gaussian distri-
bution N(0,02). To control the influence of training samples on the parameters, the gradients are
clipped by ls-norm:
) C
w0 = gromin (1,7 @
llgill2

where g; is the gradient corresponding to the i-th sample and C' is the clipping factor. It has been
shown in [Aba+16] that each step of DPSGD is (g, §)-differential private once we tune the noise

c=Czasz= -
SI-DPSGD Here, we develop a different approach for training deep neural networks while pre-
serving data privacy. Our approach deviates from DPSGD by making a major change in the
representation of weights, i.e., we sample the weights from a normal distribution with learnable
mean parameters g, and a fixed variance o2 given by the desired privacy loss. Furthermore, we
utilise the normalisation layers to retain the model performance. Algorithm 2 outlines the steps of
SI-DPSGD for differentially private training of networks augmented with layer normalisation lay-
ers. We have also implemented the SI-DPSGD algorithm for batch normalisation for vision datasets
(MNIST and CIFAR-10) with slightly better results than layer normalisation.

Consider Algorithm 2, the first step is to initialise the mean parameters and weights randomly.
Then, at each iteration, we bound the influence of each individual sample on the gradients. To do
so, we follow the same strategy as in DPSGD [Aba+16], i.e., we clip the gradients in ls norm using
a clipping threshold C as in Equation (7). We, then, update the mean parameters p; by SGD
using truncated gradients. Finally, to preserve privacy, we sample the weights from the normal

distribution N (pes11, %%0222), with updated mean values and the variance corresponding to the
privacy loss for each iteration. These sampled weights, in turn, will be used in the next forward and
backward pass to compute the loss and gradients. Using standard arguments, it can be shown that
each iteration of Algorithm 2 is (e, §)-differentially private. It is important to note that the mean
parameters p; are not protected by this mechanism and should not be revealed to the adversary as
we do not add noise to the gradients.

Result We report the results of our method and compare them with existing differentially private
mechanisms. All models, as well as DPSGD, have been implemented in PyTorch [Pas+17]. To
track the privacy loss over the whole training procedure, we employ the Rnyi differential privacy
technique developed in [Mirl7]. It provides a tighter bound on the privacy loss comparing with the
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Algorithm 2: SCALE INVARIANT DPSGD WITH LAYER NORMALISATION

Input: dataset D = {(z1,41), -} of size N, loss function £(6,.), learning rate n;, noise
multiplier z, sample size L, gradient norm bound C' and T iterations.

e Initialise mean parameters o randomly.
e Set weights as 0y = .
fort=0toT —1do
e Take a random sample with size L and selection probability %
e Compute gradient
gt(xi) < V“tﬁ(et,ﬂfi).
e Clip gradient
gi(zi) < ge(zi) - min(1, C/|[gi(x:)]l2)
e Compute averaged gradient
1
g+ 12 8t(w)
e Update mean parameters:
Ktt1 <= e — Nt 8t
e Sample weights
2
0ri1 ~ N(pet1, 75C%27)
end for ,
Return 07 ~ N (pr, 75C%22).

strong composition theorem [DRV10]. We use the open-source implementation of Rnyi DP from
the TensorFlow Privacy package'. The total privacy loss € is computed as a function of the noise
multiplier z, the dataset size N, the lot size L, the number of iterations 7', and .

Table 10 depicts the accuracy of various models on the MNIST test set for a range of values of
e from high to very low privacy losses. In addition to [Aba+16], we have included the TensorFlow
Privacy benchmark on MNIST and LATENT which is a local-privacy based mechanism proposed
recently in [Ara+19]. Additionally, we trained LeNet-5 with and without normalisation layers with
DPSGD and SI-DPSGD. However, since DPSGD is not directly applicable to batch normalisation,
we just show the results of DPSGD with layer normalisation. Also, for training the model augmented
with batch normalisation using SI-DPSGD, we employed 30 images of KMNIST [Cla+18] as the
public dataset and we added batch normalisation after each learnable layer except the last one
before softmax. The probability J is set to 107° in all our experiments.

As it is evident from Table 10, our method consistently outperforms other mechanisms for all
values of privacy loss. Remarkably, the performance of LeNet-5 trained with SI-DPSGD is almost
identical for various privacy losses and the largest gap between private and non-private models is
just about 0.6%. In particular, using SI-DPSGD along with batch normalisation, we are able to
train the LeNet-5 model under an extremely low privacy loss ¢ = 0.025 with 98.58% accuracy, which
is very close to the non-private 99.2% accuracy. Training with DPSGD results in 50% reduction in
accuracy for the same model.

Table 11 shows the result of our experiment on text classification. We compare the test accuracies
of a BILSTM model trained by DPSGD with or without LN layers and the same model trained
by SI-DPSGD on the AG NEwS corpus. SI-DPSGD clearly outperforms DPSGD with or without

5https://github.com/tensorflow/privacy
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Table 10: Testing accuracy of various differentially private training methods on MNIST as a
function of the privacy loss with 6 = 1075,

privacy loss (¢)

DP Algorithm

00 7 3 1 0.5 0.1 0.05 0.025
DPSGD [Aba+16] 98.30%  96.90%  95.80%  93.10%  90.00% NA NA NA
DPSGD [TensorflowPrivacy]  99.00%  97.16%  96.89%  95.00%  91.12%  84.10%  72.77%  29.40%
LATENT [Cha+19) 98.16%  97.10%  96.05%  97.10%  96.26% NA NA NA
DPSGD (LeNet-5) 99.20%  97.01%  96.34%  94.11%  91.10%  83.00%  78.96%  31.56%
DPSGD (LN-LeNet-5) 99.20%  97.35%  97.05%  96.68%  94.81%  87.45%  75.76%  49.53%
SI-DPSGD (LeNet-5) 99.20%  98.90%  98.90%  98.72%  99.10%  99.00%  98.84%  90.82%
SI-DPSGD (LN-LeNet-5) 99.20%  98.85%  98.30%  98.41%  98.56%  97.92%  97.54%  98.36%
SI-DPSGD (BN-LeNet-5) 99.20% 99.17% 99.17% 99.15% 99.18% 99.14% 99.12% 98.58%

Table 11: Testing accuracy of various differentially private training methods on AG NEWS as a
function of the privacy loss with § = 107°.

privacy loss (¢)

DP Algorithm

0o 7 3 1 0.5 0.1 0.05
DPSGD (BiLSTM-DL) 88.47%  83.86% 80.00% 81.14% 77.88% 37.49% 31.78%
DPSGD (LN-BiLSTM-DL) 88.18%  83.54% 82.43% 82.03% 78.87% 50.09% 31.59%
SI-DPSGD (BiLSTM-DL) 88.47%  85.93% 85.70% 83.29% 81.17% 77.88% 56.72%

SI-DPSGD (LN-BiLSTM-DL) 88.18% 87.80% 87.58% 85.74% 85.36% 84.32% 80.10%

LN for all the considered privacy losses ¢ = {0.05,0.1,0.5,1, 3,7}, and with a large margin of over
30% improvement in accuracy for the lowest privacy losses € = 0.1 or 0.05. Also, the best result
we obtained is by training SI-DPSGD with LN: even at a very low privacy loss € = 0.05, we only
faced an 8% drop in accuracy. These experiments reveal that our proposed SI-DPSGD algorithm
and layer normalisation are the two factors for attaining the highest accuracy, although SI-DPSGD
contributes most to reaching this high accuracy.

The proposed method is very general and can be used to train other SLU models in a differen-
tially private manner in the future.

3.3 Addressing more traits in speech

In COMPRISE, we have first focused our research on the speaker identification problem. Indeed, as
already shown in our experiments, speech is a kind of biometric data that can identify speakers with
very high probability. X-vectors are the most powerful speaker representation technique and they
are efficient for speaker identification even with very short utterances. When such an identifier is
available, all the information (that is the entire spoken message) linked to the identifier is considered
as personal data. The privacy-driven speech transformation techniques we introduced in COMPRISE
significantly lower the risk that attackers succeed to identify speakers. But the results are mitigated
when the set of possible speakers is small. A possible strategy for an attacker is then to try to reduce
the possible set of candidates to increase the chance of identifying someone. To do so, other traits
like gender, age, or accent may be used.
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In this section, we present the first results about gender identification. In gender identification,
pitch is a very important feature. VoiceMask and VTLN can be parameterised so that a target
speaker, and hence a target gender can be selected to adapt the pitch of the speaker. Disentangled
representation based VC and VPC are also parameterised with a target speaker and implement
different strategies including cross-gender transformations.

The x-vector space, when represented in a TSNE-plot, clearly shows gender clusters on original
data. After transformation with the previous methods (VTLN, VoiceMask, and disentangled rep-
resentation based VC), we still visually obtain very distinguishable gender clusters (see Figure 6).
This is confirmed by a series of experiments where we learn gender classifiers based on x-vectors
(see Table 12). We took simple k-NN classifiers with k£ = 3. The experiments are based on a small
dataset of 21,650 utterances from 29 speakers (13 male / 16 female). In the (semi-)informed case,
the classifier is trained and applied on data transformed with the same method. In the ignorant

Librispeech trial (29 speakers / 21650 utterances)
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Figure 6: TSNE plots of x-vectors built on the LIBRISPEECH dataset. The top left subplot corre-

sponds to the original data. The other plots are built after transformation with VoiceMask, VTLN,
and disentangled representation based VC, respectively.
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Table 12: Gender classification results.

Anonymization \ Attack model | Accuracy
original 0.972
. ignorant 0.784
VoiceMask .
informed 0.972
ignorant 0.556
VTLN semi-informed 0.932
informed 0.939
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Figure 7: TSNE plots of x-vectors built on the LIBRISPEECH dataset. The top left subplot cor-
responds to the original data. The selected speakers to be transformed appear as bigger colored
dots. The bottom left subplot shows where the selected speakers have been mapped when a random
target speaker is used. Right: same figure for females only.

case, the classifier is trained on clean data and applied on transformed data.

With the new VPC transformer, results are much more promising, as shown in Figure 7. Indeed,
speaker representations are mixed among the set of possible representations and genders are also
mixed.

3.4 Hiding user attributes in speech transcripts

In Section 3.3, we described different approaches to prevent the identification of users by gender or
accent on the speech signal. However, if STT is applied to obtain a speech transcript, we hypothesise
that some user attributes such as identity, gender, and age may still be linked to the speaker. For
instane, the speaker may use unique filler words or a specific speaking style that are captured in
the text. Anonymising the speaking style of users in the text transcript is therefore important to
hide these attributes and protect their privacy. A few studies have been conducting on changing
the writing style of users in blogs and political speeches [SSF18; GA19] to hide traits like identity,
age, and gender. These approaches have been evaluated on large blog and political speech datasets
with over 3 million and 65,000 sentences, respectively. Therefore, we focus on approaches that work
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well in low-resource settings, i.e., small in-domain corpora of, e.g., a few hundred sentences, and
which may benefit from large out-of-domain datasets.

As a first step, we verify our hypothesis that users’ traits can be detected from speech transcripts
by training a classifier to determine whether utterance transcripts can be used to predict gender
and age. We confirm this using the VERBMOBIL dialogue corpus [Wah00]. Specifically, we check
whether combining all the utterances of a speaker can be used to correctly classify their gender or
age.

Dataset We only consider the 726 English dialogues in the VERBMOBIL corpus. Each dialogue
involves two speakers, which brings the total number of speakers to 1,452. Out of these, we found
age and gender attributes for 1,192 speakers, including 913 males and 279 females. Table 13 shows
the distribution of these attributes. We chose an age threshold of 20 to split the speakers into two
age groups: teenagers (below 20) and adults (above 20), with 484 and 600 speakers, respectively.

Table 13: Number of speakers per gender and age group in the VERBMOBIL dialogue corpus.

Gender Number of speakers Age group Number of speakers
Female 279 Teenager (< 20) 484
Male 913 Adult (> 20) 600

Experimental setup and results We consider two popular text classification models: Support
Vector Machines (SVM) and Convolutional Neural Networks (CNN). The features used for each of
the models are word embeddings from Word2Vec [Mik+13]. We trained a 3-layer CNN word-level
model with an embedding layer and one fully-connected linear layer. For the SVM, we make use
of 75% of the data as training and 25% as test data. However, for the CNN model, the data
splits consist of 70% training sentences, 10% validation sentences and 20% test sentences. Since
the data is imbalanced, especially in terms of gender, we sample sentences from the training data
that belongs to the minority class (i.e., female in the gender classification) with replacement (i.e.,
upsampling) so that the number of examples matches the majority class (i.e., male).

Table 14 shows the results of age and gender classification. We use the accuracy and the F1-score
for evaluation, where the F1-score is more appropriate when the classes are imbalanced. With the
CNN model, we reached an Fl-score of 75% for gender classification and 74% for age classification,
which is better than the values obtained by the SVM classifier. Upsampling further improves the
Fl-score by more than 16% and 19% for gender and age, respectively. Our results show that we
can easily identify the gender and age of users by their dialogue utterances. As future work, we
plan to investigate what kind of words or part of utterances are more likely to be predictive of
gender and age using Layerwise Relevance Propagation [Arr+17] — an approach for explaining
the features that contribute to the prediction of a class in neural networks. Also, we will consider
utterance-level anonymisation of dialogue speech transcripts. Furthermore, we will evaluate our
anonymisation technique on other languages like Latvian where word endings directly indicate the
gender of the speaker.
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Model Gender Age
Accuracy F1l-score Accuracy F1l-score
SVM 72.1% 63.0% 57.5% 57.0%
CNN 83.7% 75.0% 76.0% 74.0%
SVM (upsampled) 73.7% 73.7% 77.0% 77.0%
CNN (upsampled) 89.3% 89.3% 96.8%  96.8%

Table 14: Gender classification accuracy on the VERBMOBIL test set for different models.

3.5 Experiments with Latvian data

It is worth noting that the training and the evaluation of our speech anonymisation transformers
were done for English. But we think that our methods are language-independent and can be
run on other languages without any effort. Hence, we have been working on evaluating the voice
transformation procedures on Latvian. The dataset is a property of TILDE and therefore the
experiments were done directly by TILDE. With respect to this initiative, we first confirmed that
the instructions were sufficiently clear to run the software by users that were not involved in its
development. The characteristics of the dataset are reported in Table 15. Trials are only between
speakers of the same gender and hence the gender-related experiments in Section 3.3 have not been
conducted.

Total trials 164068

Impostor 157156

total speakers 50 (28 - male, 22 - female)
Total number of utterances | 7400

Table 15: Characteristics of the Latvian dataset.

Anonymisation results are presented in Table 16. They are very promising because a Cili* value
of 0.952 with a semi-ignorant attacker is a good indicator of anonymisation. On the utility side,
after training an STT system, a WER of 11.59% was obtained on the test data. We observed
an increase of the WER to 25.84% when the test data was anonymised. The numbers are in
fact quite good although we were using English pre-trained voice conversion models over Latvian
data. Subjectively, the anonymised speech is far more intelligible than when transformed by the
VoiceMask method. But some distortions still remain.

Enrollment | test EER % | C»
clean clean 19.82 | 0.636
clean anonymised 49.77 | 1.000
anonymised anonymised 40.27 | 0.952

Table 16: Anonymisation results for the Lavian data set.
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4 Software library

The objective of the Work Package is to provide scripts to perform voice and text transformation.
Each method has:

e a Builder to compute some parameters, which are specific to each method. The builder
would be used to pre-build some parameters to be embedded in the app. The Builder is
executed (possibly just once) in the Cloud or in a lab, and uses public datasets such as, e.g.,
VERBMOBIL, LIBRISPEECH, etc., in the case of speech.

e a Transformer to transform the data (speech or text utterances of a given speaker). The
Transformer is the part that would be run on the device. This Transformer must be:

— initialised with the pre-built parameters (and possibly additional parameters) depending
on the method,

— fed with local data in case of local adaptation (for instance, with the speaker’s voice in
the case of speech processing).

In Deliverable D2.1, two voice conversion techniques, VoiceMask and VTLN, and a text trans-
former tool were made available. The text transformer identifies sensitive named entities in a
dialogue conversation and replaces them by named entities of the same type or by placeholders.
Scripts were also delivered to train, transform, and evaluate these transformations. We also pro-
vided a speech and text alignment tool and a word masking tool to remove sensitive words identified
by the text transformer tool in the speech signal.

In the current deliverable, we improve voice transformations with the VPC method introduced
in Section 3.1, and we propose new software to train Scale Invariant Differentially Private models
with linear, CNN and LSTM architectures as presented in Section 3.2.

We provide Docker containers for the voice transformer and builder and for the text transformers
on the client side. Detailed information is available in the README of the COMPRISE git repository
of the deliverable and its subtrees.!® In this report we enlighten the ease of use of the available
software by some examples using the Docker files.

4.1 Voice Transformer

The new VPC voice transformer is available as a git repository and as a Docker container.

4.1.1 Builder

The builder of this voice transformer extracts x-vectors from a pool of speakers that forms a subset
of LIBRISPEECH:

sudo docker run -it --gpus all \
-v "$(pwd)"/io:/opt/vpc/io \
registry.gitlab.inria.fr/comprise/development/vpc-transformer:deliv22 \
./build.sh --anoni_pool train-other-500

6https://gitlab.inria.fr/comprise/deliverables/deliverable_d22
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4.1.2 Transformer

sudo docker run -it --gpus all \
-v "$(pwd)"/io:/opt/vpc/io \
registry.gitlab.inria.fr/comprise/development/vpc-transformer:deliv22 \
./transform.sh --ipath ./inputs/e0003.wav

The configuration is stored in io/config/config transform.sh.

wgender=f
pseudo_xvec_rand_level=spk

gender m or f

spk (all utterances will have same xvector)
or utt (each utterance will have randomly
selected xvector)

false, same gender xvectors will be selected;
true, other gender xvectors

false, same gender xvectors will be selected;
true, other gender xvectors; random gender
can be selected

false, same gender xvectors will be selected;
true, other gender xvectors; random gender
can be selected

cosine or plda

nearest or farthest speaker to be selected
nearest or farthest speaker to be selected
dense or sparse region to be selected
anonymisation pool

#cross_gender="same"

#cross_gender="other"

cross_gender="random"

distance="plda"
#proximity="random"
#proximity="farthest"
proximity="dense"
anoni_pool="train_other_500"

HOH HF H H HEHHEHHHHHEHRHEHH

4.2 Text Transformer

The text transformer is available as a git repository and as a Docker container as well. See below
a full example of installation followed by the transformation of a text file test.txt located in the
host inputs directory into a transformed file out.txt located in the results directory.

git clone https://gitlab.inria.fr/comprise/development/text-transformer

cd text-transformer

docker run -v $(pwd)/io:/opt/io\
registry.gitlab.inria.fr/comprise/development/text_transformer:deliv22 \
python transform.py io/inputs/test.txt ./io/test_out.txt

The builder for text transformers was delivered in the last period and is available in the CoM-
PRISE git repository.l”

4.3 SI-DPSGD
The SI-DPSGD training tool is available in the git repository:

Thttps://gitlab.inria.fr/comprise/text_transformer
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git clone https://gitlab.inria.fr/comprise/sidp
cd sidp

Before running SI-DPSGD on any dataset, users must install tensorflow privacy'® and run
compute_dp_sgd_privacy.py'® to obtain the noise multiplier o corresponding to their choice of &
(privacy loss). For example,

compute_dp_sgd_privacy.py —--N=60000 --batch_size=256\
--noise_multiplier=1.1 \
--epochs=60 --delta=le-5

The following scripts run SI-DPSGD for image classification and text classification. For image
classification on MNIST data, run:

main_mnist.py [experiment_name] [noise_multiplier] [clip]
where

e experiment_name is one of the following: "non-dp”, ”"dp” or ”sidp”. "non-dp” trains a non-
differentially private model (i.e., no privacy constraints), "dp” is the standard DPSGD ap-
proach and ”sidp” is the proposed SI-DPSGD approach.

e noise_multiplier is the amount of noise o to be added to the gradient
e clip is the clipping factor C' to preserve the sensitivity of differential privacy.
For text classification on the AG NEWS corpus, run:

python main_text_classification.py [experiment_name] [noise_multiplier] [clip]

5 Summary

In this deliverable, we have followed the objectives stated in the proposal, namely the design, im-
plementation, and evaluation of speech and text transformations addressing more types of private
information and initial statistical utility /privacy bounds. We have studied in depth statistical pri-
vacy bounds through the examination of several privacy measures (Section 2.3) and the introduction
of more challenging scenarios concerning the possible knowledge of an attacker (Section 2.2). In the
case of text transformation, we have examined the trade-off between utility and privacy through
the lens of the information-theoretic approach of differential privacy. We have started to address
more types of private information by considering gender and age in Sections 3.3 and 3.4. We have
also paved the way for better privacy-preserving learning, by introducing an efficient method for
differentially private training of deep learning models (Section 3.2) and by conducting a study
of context data and metadata (Section 2.1). On the implementation side, we deliver an improved
speech transformation tool that provides better anonymisation and a new differentially private deep
learning training tool.
Future work includes several directions:

18https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/compute_dp_
sgd_privacy.py
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Separation of the privacy concerns regarding STT and SLU training. Indeed, we observe
that there may be privacy leaks when considering joint speech and text data at the dialogue
or even the sentence level. Therefore we plan to build anonymised speech datasets for STT
training by collecting short utterance segments and text-only datasets for SLU training.

The extensive study of the x-vector space has revealed further insights and we are now ready
to improve again our transformation tool using a better strategy to select target (pseudo-
)speakers. We have started to work on it.

Another important way to improve anonymisation procedures is to follow the idea of adding
noise to fulfil the requirements of differential privacy. Therefore, an intensive study of the
robustness to noise of our training methods is useful. Again, we have started to work on that
topic and we will continue in the next period.

The attacker’s knowledge is of primary importance when studying privacy measures. In the
adversarial approaches we have studied in the previous period, the design of a good attacker
is essential to obtain a robust anonymised representation of speech data. We have started to
study how variational Bayes approaches can strengthen the adversary by virtually building a
large range of possible attackers.

On the software side, we will integrate these tools in the COMPRISE SDK Client Library.
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