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Document summary 

This deliverable describes effort taken in Work Package 3 to enable any user to interact 

with dialogue systems in any language. 

The document focuses on the research activities and software components that form the 

foundation of the “Initial multilingual interaction library”, which will combine machine 

translation, speech-to-text and dialogue management.  

The first part of the document is devoted to research on integration of machine translation 

and speech-to-text. This integration will allow a user speaking his/her own language to 

interact with a dialogue system originally developed in another language. We introduce 

a “synthetic data pipeline” approach for training machine translation models that are 

robust to speech recognition errors. We describe the experimental setup and empirically 

evaluate our approach in different conditions. Then, the outcomes are analysed and 

discussed.  

The second part of the document is focused on the main software components of the 

multilingual interaction library which are machine translation and dialogue management. 

Because of the limitations of modern mobile devices both components are implemented 

as cloud-based services. Full accurate and up-to-date documentation of both 

components is provided online for developer convenience. Therefore, this deliverable 

only documents the base functions of the APIs and gives references to the full 

documentation. 
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1. Introduction 

The objective of Work Package 3 is to enable any user to interact with dialogue systems 

in any language. This will be achieved by: 

● Combining Machine Translation (MT) with Speech-To-Text (STT) and Text-To-

Speech (TTS) in order to provide a transparent interface between a user 

speaking a given language and a dialogue system (or possibly a human) in 

another language. 

● Further combining MT with the components of a dialogue system, i.e., spoken 

language understanding, dialogue management, and spoken language 

generation. 

● Adapting these models to every user by running additional computations on the 

user’s device so as to improve performance for that user specifically. 

This deliverable, entitled D3.1 – Initial multilingual interaction library, focuses on the first 

two points and describes research efforts, software components and the documentation 

for speech-to-text translation and the integration of dialogue systems in the operating 

branch. The STT and TTS components are not described here (see Work Package 4).   

Integrating MT with STT allows a user speaking his/her own language to interact with a 

dialogue system in another language. This combination is not straightforward. First, we 

can distinguish between two modes of translation: 

● Simultaneous translation: The translated text is provided at the same time as the 

speaker speaks.  

● Asynchronous translation: The translated text is provided after the speaker 

finishes an utterance.  

Simultaneous translation reduces the delay between speech and translation and can 

thus improve the user experience. This is especially important for long utterances and 

monologues. However, it requires both real-time STT and real-time MT and creates a 

number of additional technological and research challenges.  

In COMPRISE, we are interested in voice assistant and dialogue scenarios where 

utterances are usually short, and translation can be performed at the end of user input. 

This allows us to focus on asynchronous translation.  

Further, there are two main technical approaches for integrating STT and MT: 

● Sequential speech translation: Perform speech recognition first, then translate 

the recognised text.  

● End-to-end translation: Use a single component (usually a neural network) to 

translate to the target language directly from the audio input in the source 

language.  

End-to-end translation is considered to be a more promising approach. Theoretically it 

allows the joint optimisation of STT and MT components for a particular task and should 

be more robust. However, current end-to-end systems do not reach state-of-the-art 

performance yet. Another downside to this approach is that it requires a rare kind of 

training data: translated speech corpora. Such data exists only for a few languages and 
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in small quantities, compared to large existing corpora of parallel text and annotated 

speech. Therefore, in COMPRISE, we will focus on sequential translation. 

Another important issue concerns ungrammatical spontaneous spoken language: people 

speak continuously without pauses and sentence breaks, often make repetitions, correct 

themselves, or stop in the middle of the sentence. As stock MT expects clean input, the 

aforementioned issues must be addressed in the STT output. This means either 

correcting speech disfluencies before the resulting text gets translated or adapting the 

MT model to handle such artifacts. 

USAAR’s dialogue platform Platon which was originally envisioned as the basis for the 

developments in COMPRISE is no longer maintained, therefore the consortium opted for 

TILDE’s cloud-based dialogue system Tilde.AI as an appropriate alternative. This system 

comprises Spoken Language Understanding, Dialogue Management, and Spoken 

Language Generation in an integrated framework. Tilde.AI is an appropriate choice since 

it is comparable in terms of  features  provided  and — being  provided  by  one  of  the 

consortium partners — allows for individual customisation if required for the execution of 

the project.  

Since the dialogue system has previously been employed only in-house at TILDE, some 

development effort was necessary to make the new system available to all partners in 

the form of a web-API. In parallel to the technical tasks, substantial effort has been 

invested into providing documentation which is also part of this deliverable. 

This deliverable is structured as follows. First, we describe the research conducted on 

robust integration of MT and STT. Next, we provide an introduction to the MT and 

dialogue management (Tilde.AI) APIs which will be used in the operating branch of 

COMPRISE. Finally, we conclude and present our plans for the remainder of the project. 

2. Integration of machine translation and speech-to-

text 

In this project, and as explained in Section 1, we will focus on asynchronous sequential 

spoken language translation. The main problem of the sequential approach is data 

quality mismatch between STT and MT: 

● Due to potential recognition errors, the STT system outputs a noisy textual 

representation of the spoken language. In addition, this representation does not 

have any punctuation and can contain disfluent and ungrammatical parts. 

● An MT system is trained on written language; therefore, it expects input to have 

punctuation and be fluent and grammatically correct.  

The implication of this mismatch is poor translation quality if STT and MT components 

are naively combined. There are several possible approaches to tackle this issue: 

● Train MT on spoken language, e.g., on transcripts of STT training data.  

● Post-process STT output to adapt it for MT: insert punctuation, correct 

disfluencies.  

● Synthetically imitate spoken language features in the MT training data to train a 

robust MT model. 
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Each of these approaches has its own advantages and limitations. Theoretically, training 

MT on real spoken data should provide the best results. Unfortunately, STT datasets 

rarely come with translations and are often too small for training modern neural MT 

models. Still, if translation is available, STT data can be used for adaptation of a pre-

trained MT model.  

The post-processing approach can be a good option for high-resource languages, such 

as English, that have various spoken language processing tools and spoken language 

datasets available. This allows the development of both data-driven and rule-based 

solutions for correcting ungrammatical and disfluent utterances (Hassan et al., 2014). 

For low-resource languages, however, which might not have required datasets or 

processing tools, following this approach is problematic. 

The idea of the third approach is to simulate STT errors in the training data of MT. There 

are multiple ways to do this, for example, randomly substituting correct words by 

potentially confusing words using acoustic and linguistic embedding similarity (Simonnet 

et al., 2018). This approach makes MT robust to STT errors, yet additional measures are 

needed to deal with ungrammatical and disfluent input. These will be investigated in 

further research.  

In our initial experiment, we explored the latter approach, but decided to generate data 

with synthetic STT errors by using a pipeline of TTS and STT technologies, as will be 

detailed in Section 2.1. The advantage of this approach is that it generates not only 

substitution errors, but also insertions and deletions. In addition, it does not require 

additional data and uses only already available MT training data. However, it is limited 

by the availability of STT and TTS for a given language. In the case of COMPRISE, such 

technologies will be available at least for the six languages (English, French, German, 

Latvian, Lithuanian, Portuguese) and language pairs needed in the project.  

2.1 Synthetic data pipeline 

The basic idea of this approach is to convert usual MT training data to a form that 

resembles the raw output from the STT system. This will introduce errors that are 

typically found in speech recognition output into the training data, and thus make the MT 

system more robust. We propose the following training data pre-processing pipeline (see 

Figure 1): 

 

Figure 1: The synthetic data pipeline 

● Synthesise source language sentences from the MT training dataset using TTS 

(the grey boxes in Figure 1). 

● Use STT to transcribe the synthesised sentences (the orange boxes in Figure 1). 

● Use STT transcriptions together with the original target sentences as the 

synthetic MT training dataset. 

Source 
text 

TTS STT 
Synthetic 
source 

text 

Target 
text 

Synthetic 
source 
audio 

Synthetic MT training dataset 
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Before performing TTS and STT, the source text should be pre-processed. For example, 

tokens that are pronounced incorrectly should be replaced to yield a correct 

pronunciation, and tokens that are not pronounced in spoken language (e.g., special 

characters) should be filtered out. Theoretically, the pre-processing step could also inject 

ungrammatical and disfluent segments into sentences. This additional option will be 

explored in future research. 

In the initial experiment, we focus on Latvian-English speech-to-text MT. For speech 

synthesis, we use three Tilde Latvian TTS voices. Each sentence is synthesised with 

one of the three voices chosen at random. The source text is filtered from characters that 

should not be pronounced by TTS (parentheses, quote signs, some punctuation signs). 

For STT, we then use Tilde’s Latvian STT system which is based on a hybrid Hidden 

Markov Model and a Time-delay Neural Network acoustic model. The language model 

is implemented on a sub-word level using Byte-Pair Encoding (BPE) and consists of 4-

grams, 6-grams, and a Recurrent Neural Network language model (RNNLM). However, 

in order to inject more errors into the resulting synthetic training data, only the 4-gram 

language model is used here. 

As raw speech recognition output contains numbers written with words instead of digits, 

the MT system will have to learn how to translate words into digits. Therefore, to simplify 

the training of the MT system, we apply Tilde’s in-house number normalisation tool for 

Latvian which rewrites numbers as digits. In the case when number normalisation tools 

are not available for a given language, raw transcripts from the STT system could also 

be used as the source text for MT training. 

2.2 Data 

The Latvian-English WMT 2017 training dataset (Bojar et al., 2017) is used for training 

the MT system. The dataset consists of three smaller datasets: 

● Europarl: proceedings of the European Parliament (637,599 sentence pairs). 

● RAPID: press-releases taken from the Press Release Database of the European 

Commission (306,588 sentence pairs). 

● DCEP: press-releases, session and legislative documents related to the 

European Parliament’s activities and bodies (3,542,280 sentence pairs). 

First, the data is processed by the Synthetic Data pipeline described in the previous 

section. The Word Error Rate (WER) of the synthesised data was approximately 20.7%. 

Then, we follow our baseline MT training recipe and pre-process the data using standard 

Moses (Koehn et al., 2007) scripts for normalisation of punctuation, tokenisation, parallel 

corpora cleaning, and truecasing, all of which are taken from the Moses GitHub 

repository3. The data is further split into sub-word units using byte-pair encoding. For this 

task, we use SubwordNMT4 (Sennrich et al., 2016).  

                                                
 

 

3 https://github.com/moses-smt/mosesdecoder 
4 https://github.com/rsennrich/subword-nmt 

https://github.com/moses-smt/mosesdecoder
https://github.com/rsennrich/subword-nmt
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For tuning, we use the NewsDev2017 dataset from WMT 2017 (2003 sentence pairs) 

which is also processed using the same methods and tools. 

The evaluation is performed on three datasets: 

● NewsTest2017 from WMT 2017 (2001 sentence pairs). 

● Synthetic NewsTest2017 which is NewsTest2017 processed by the same TTS-

STT pipeline (2001 sentence pairs). 

● Real-world test set “Tilde Balss” (1159 sentence pairs). 

The real-world test set is based on a subset of data collected by the Tilde real-time 

Latvian STT. This subset contains 8820 utterances and 37782 words in 39 hours of audio 

(including silence). Utterances come from various domains: queries, short messages, 

addresses, interaction with a voice-enabled educational app, etc. In addition, it contains 

a lot of “noise”: laughing, English and Russian speech, untranslatable or ambiguous 

utterances, etc. Therefore, several rounds of semi-automatic filtering were performed to 

select meaningful utterances from this dataset. This resulted in a dataset of 1159 Latvian 

utterances which were manually translated to English. 

2.3 Evaluation results  

Since the paradigm-shifting success of Neural Machine Translation (NMT) systems at 

the 2016 Conference on Machine Translation (WMT) (Bojar et al., 2016), and the 

invention of the self-attentional Transformer architecture (Vaswani et al., 2017), 

Transformer-based NMT models have become the baseline choice for MT experiments.  

Therefore, for the evaluation of the synthetic data pipeline, three NMT systems with the 

Transformer architecture are trained: 

● Baseline: 

o MT system trained on original parallel data (skipping the synthetic data 

pipeline). 

o Validated on just clean data (skipping the synthetic data pipeline). 

● STT only: 

o MT system trained on synthetic parallel data only. 

o Validated on both clean and synthetic NewsDev2017 data. 

● Mixed: 

o MT system trained on both original and synthetic parallel data. 

o Validated on both clean and synthetic NewsDev2017 data. 

We use the Marian NMT toolkit (Junczys-Dowmunt et al., 2018) for the training of all 

three systems and the Marian base model configuration for the model hyper-parameters. 

First, trained MT systems are evaluated using the BLEU metric (see Deliverable D6.2 – 

“Initial scientific evaluation” (submitted to the European Commission on February 28, 

2020 − Public)) on clean and synthetic NewsTest2017 test sets (see Table 1). We use 

two versions of the synthetic NewsTest2017 test set: (1) transcribed using a 4-gram 

language model (like the training data) and (2) rescored by 6-gram and RNNLM. This 
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imitates both low- and high-quality STT scenarios. The STT WERs are 20% and 8%, 

respectively.  

Table 1:  BLEU scores on clean and synthetic NewsTest2017 (higher is better). 

System 
Clean 

NewsTest2017 
Synthetic 

NewsTest2017 
Rescored Synthetic 

NewsTest2017 

Baseline 
16.96  

(16.35-17.54) 
12.75  

(12.24-13.24) 
13.32  

(12.79-13.9) 

STT only 
12.81  

(12.23-13.37) 
14.17  

(13.57-14.75) 
14.33  

(13.75-14.89) 

Mixed 
16.88  

(16.3-17.5) 
14.51  

(13.98-15.11) 
15.01  

(14.48-15.54) 

The results show that the MT system trained on original training data performs best on 

the clean test set NewsTest2017, but it is not really robust, as its quality degrades 

significantly on the Synthetic NewsTest2017 which imitates STT recognition errors. The 

MT system trained on synthetic data only outperforms the baseline on synthetic test sets, 

but shows poor quality on clean written text. The advantages of both are combined if 

both original and synthetic data is used for training. The “mixed” MT system achieves 

the best BLEU scores on synthetic test sets and is very close to the baseline on the clean 

original tests set.  

Table 2 shows the outcome of an evaluation on the real-world Tilde Balss test set. We 

use three variants of this test set: (1) reference transcripts, (2) transcribed with 4-gram 

LM and (3) transcribed using the full Tilde STT system, rescored with 6-gram and 

RNNLM. STT WERs are 22% and 17%, respectively.  

Table 2: BLEU scores on Tilde Balss test set (higher is better). 

System 
Tilde Balss 

(using reference text) 
Tilde Balss 

(4-gram only) 
Rescored Tilde 

Balss 

Baseline 14.09 11.14 12.24 

STT only 13.65 11.88 12.38 

Mixed 15.69 13.50 14.12 

The result is similar to the result on the synthetic test set but with one significant 

exception: the MT system trained on a mix of original and synthetic data outperforms the 

baseline even when translating reference human transcripts of the test set (i.e., without 

STT errors). This is mainly because reference transcripts of Tilde Balss test set do not 

contain punctuation. 

2.4 Discussion and future work 

The idea of the synthetic data pipeline is to lower the mismatch between actual STT 

output and expected input of a standard MT system. This is achieved in two ways: 

● Removal of punctuation and other tokens or characters that are not found in the 

spoken language. 
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● Introduction of noise that is similar to the noise produced by STT in the real-world. 

The analysis showed that the synthesised training data have the following features of 

real-world STT transcripts: 

● Morphology mistakes: word endings are not always aligned.  

● No punctuation and no capitalisation.  

● Split words: a typical STT error when one word is split into several.  

● Merged words: several consecutive words can be merged together, because it is 

very difficult to detect the boundaries between words in spoken language.  

● Missing words: sometimes STT can skip short words.  

● Wrong (but phonetically similar) lexical choice: sometimes STT fails to 

disambiguate similarly sounding words. 

We also noticed that the synthetic data pipeline introduces new errors that negatively 

impact the MT training due to the fact that the WMT 2017 dataset contains many foreign 

person names. This results in two problems: 

● The TTS engines used in the synthetic data pipeline are unable to correctly 

pronounce most of the foreign person names. 

● While the STT system used in the initial experiment is open-vocabulary, it is still 

biased to the most frequently used Latvian words and names.  

As a result, the synthetic training data contains many examples where regular, frequently 

used Latvian words are translated into foreign person names. When analysing the MT of 

the Tilde Balss test set, we found many cases where the MT system suddenly translates 

simple language, such as frequent Latvian words and names, to foreign person names. 

Similar problems might arise for other named entities or terms. 

In addition, the number normalisation tool sometimes makes mistakes, resulting in one 

number being translated into another. Moreover, it seems that pronunciation and 

normalisation of alphanumeric tokens is very ambiguous in general. This introduces a lot 

of noise into the training data which is not related to speech recognition. 

These problems highlight the fact that there are many open questions on how to prepare 

synthetic training data. It is also yet unclear how much we should ask the MT system to 

invent things that are not present in spoken language. For example, should we ask the 

MT system to restore punctuation in the text, should this be done by a separate model 

as pre-processing or should we just ignore this issue and output translation without 

punctuation? The same question also applies to capitalisation, normalisation of numbers, 

web addresses, etc. This is an area of further research within and beyond the 

COMPRISE project. Nevertheless, the evaluation results allow us to conclude that:  

● Mixing of clean and synthetic parallel data allows the MT system to translate both 

clean and noisy data. 

● Having typical STT noise in parallel data allows MT systems to learn to recover 

from STT mistakes. 

● An adapted MT system outperforms the baseline even in cases where the STT 

worked perfectly because it learns not to depend on punctuation. 
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3. Software components 

3.1 Machine Translation 

Ideally, MT would be a part of the COMPRISE Multilingual Interaction Library and run 

locally on a mobile device. However, MT is too resource-consuming and requires a large 

amount of computational, run-time memory, and storage resources, which are typically 

unavailable on mobile devices. Since the development of MT to run on-device would 

require a separate project on its own and the development of new MT services is out of 

the scope of COMPRISE, we employ the cloud-based components of Tilde MT. This 

cloud service will be called by the COMPRISE SDK Client Library. 

This section provides the documentation of the basic Tilde MT API functions which will 

be used by the COMPRISE SDK (see Work Package 4). The full documentation can be 

found at https://www.tilde.com/developers/machine-translation-api. The Tilde MT API 

implements a RESTful calling style over HTTPS, i.e., all calls are inherently encrypted.  

3.1.1 Authentication 
All Tilde MT API requests must contain an authentication token in the HTTP header that 

identifies a user of Tilde MT. 

The developers of applications using COMPRISE libraries will need to contact Tilde and 

get their client-id authorisation_token. It is also possible that requesting tokens could be 

integrated into the COMPRISE Cloud Platform or into the SDK. Below is the header 

example of a HTTP request with an authorisation token: 

GET https://www.letsmt.eu/ws/service.svc/json/GetSystemList?appID=appid HTTP/1.1 

client-id: authorisation_token 

3.1.2 List of available systems 
Tilde MT API provides a method to list available translation systems for an authenticated 

user: 

GET https://www.letsmt.eu/ws/service.svc/json/GetSystemList?appID=appid HTTP/1.1 

client-id: authorisation_token 

where appid is a string application identifier chosen by the developer. 

The response will contain a JSON document containing the description of the systems 

available to the user or the application. The table below presents a short description of 

the main metadata entries of the MT system: 

Name Type Description 

ID string MT system ID 

SrcLanguage complex Source language (IETF RFC 5646) 

TrgLanguage complex Target language (IETF RFC 5646) 

Domain string Translation domain 

Title string Title of the MT system 

https://www.tilde.com/developers/machine-translation-api
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Description complex Description of the MT system 

Metadata complex More metadata about the system 

Response example: 

HTTP/1.1 200 OK 

Content-Type: application/json; charset=utf-8 

Content-Length: 916 

{ 

"System":[   

{   

"Description":{  … }, 

"Domain":"law", 

"ID":"smt-ea364952-816a-4491-9fbc-35b41056730a", 

"Metadata":[  … ] 

}, … ]} 

3.1.3 Translation 
Knowing the MT system ID, developers can translate plain text or text with inline tags 

using the Tilde MT API: 

GET 

https://www.letsmt.eu/ws/service.svc/json/Translate?appID=appid&systemID=sys&text=text 

client-id: authorisation_token 

where: 

● appid is a string application identifier. 

● sys is a string translation system ID, obtained using the method in Section 3.1.2. 

● text is the text to be translated (with or without inline tags). 

For translating longer text, it is recommended to use the HTTP POST method: 

POST https://www.letsmt.eu/ws/service.svc/json/Translate HTTP/1.1 

client-id: authorisation_token 

Content-Type: application/json; charset=utf-8 

Content-Length: XXX 

{ 

"appID": "appid", 

"systemID": "sys", 

"text": "saule spīd spoži", 

"options": "" 

} 

If a request is successful, the response will contain the translated text: 

HTTP/1.1 200 OK 

Content-Length: 23 
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Content-Type: application/json; charset=utf-8 

"the sun shines bright" 

In the case of an errors the response will contain an error description: 

code: 22 

exception: systemNotFound 

description: Translation system not found 

3.2 Dialogue Management 

The Dialogue Management functionality of the multilingual interaction library will be 

provided by Tilde.AI’s cloud-based dialogue system (see Figure 2). This system 

comprises Spoken Language Understanding, Dialogue Management, and Spoken 

Language Generation in an integrated framework. 

Normally, the developer of a mobile app will create a dialogue application with the 

Tilde.AI dashboard by defining a dialogue scenario, intents, actions, etc. Then, the 

created dialogue can be integrated into a mobile app using the Bot Service API.  

In some cases, a developer might want to implement dialogue management and text 

generation externally and use Tilde.AI only for spoken language understanding 

functions. For these cases, a separate NLU API is provided by the Tilde.AI dialogue 

system. 

Interaction with the Bot Service API and Tilde.AI NLU API will be integrated into the 

COMPRISE SDK Client Library, therefore developers using COMPRISE SDK will not 

need to access these APIs directly.  
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Figure 2: Interaction between Tilde.AI dialogue system and the COMPRISE SDK Client Library. 

3.2.1 Comparison of Tilde.AI and Platon 
The end-of-life of the Platon system necessitated a change of dialogue platform in 

COMPRISE. We opted for Tilde.AI as a replacement because it is backed by one of the 

consortium partners, but also because it is comparable in terms of relevant features. 

Table 3 lists the key features that both Platon and Tilde.AI cover: 

Table 3: Feature comparison between Tilde.AI and Platon. 

Feature Platon Tilde.AI 

Approach Domain-specific language Web service 

Network access Yes (via RPC) 
Yes (cloud-based web 

service) 

Interaction with multiple 

users 
Yes Yes 
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Multilingual input/output Yes Yes 

Built-in SLU Yes (rule-based) 
Yes (both rule-based 

and data-driven) 

External SLU integration 

possible? 
Yes Yes 

Built-in Dialogue 

Management 

Yes (hierarchical task 

decomposition) 

Yes (dialogue states, 

transitions, contexts) 

Built-in NLG Yes (template-based) Yes (template-based) 

External NLG integration 

possible? 
Yes Yes 

Developer interface Scripting Web interface, API 

Integration of business logic 

/ backend 

Java Interface, Apache 

Thrift 

REST services, 

JavaScript 

This comparison illustrates the feature overlap between two systems. The individual 

differences are mostly a consequence of the different architectural approaches (domain-

specific language vs. Web Service) but in general, one does not imply practical 

superiority over the other. The important point to notice here is the substantial overlap of 

which features are provided by both systems. 

3.2.2 Dialogue management API 
The Tilde.AI dialogue system is hosted on Azure Bot Service and uses Microsoft Bot 

Framework for user communication. To still ensure the privacy aspect of the project, the 

COMPRISE SDK Client Library can neutralise the text data before sending it to the 

Microsoft servers. The preferred method of interacting with the Bot Framework is the 

SDK provided by Microsoft for such programming languages and platforms as Python, 

JavaScript, .NET and Node.js. 

If this SDK is not available for the chosen language or if cannot be used for some other 

reason, then there are several Bot Service APIs that can be called directly: 

● Bot Framework REST API. 

● Direct Line API. 

Full documentation of these APIs can be found on Microsoft’s website5,6. Therefore, here 

we will only provide a short description of base Direct Line API 3.0 functions. 

                                                
 

 

5 Bot Framework REST API reference  
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-connector-api-
reference?view=azure-bot-service-4.0 
6 Bot Framework Direct Line API 3.0 reference 
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-api-
reference?view=azure-bot-service-4.0 

https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-connector-api-reference?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-connector-api-reference?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-api-reference?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-api-reference?view=azure-bot-service-4.0
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Authentication 
A mobile app can authenticate requests to Direct Line API 3.0 either by using a secret 

obtained from the Tilde.AI dashboard or by using a token which is obtained at runtime. 

The secret or token should be specified in the authorisation header of each request using 

the following format: 

Authorization: Bearer SECRET_OR_TOKEN 

A Direct Line secret is a master key that can be used to access any conversation that 

belongs to the associated bot. A secret can also be used to obtain a token. Secrets do 

not expire. 

A Direct Line token is a key that can be used to access a single conversation. A token 

expires but can be refreshed. 

Start a conversation 
Direct Line conversations are explicitly opened by the mobile app and may run as long 

as the user and dialogue system participate and have valid credentials. While the 

conversation is open, both the dialogue system and the user may send and receive 

messages. 

POST https://directline.botframework.com/v3/directline/conversations 

Authorization: Bearer SECRET_OR_TOKEN 

If the request is successful, the response will be a JSON object containing an ID for the 

conversation, a token, a value that indicates the number of seconds until the token 

expires, and a stream URL that the client may use to receive activities via a WebSocket 

stream: 

{ 

"conversationId": "abc123", 

"token": 

"RCurR_XV9ZA.cwA.BKA.iaJrC8xpy8qbOF5xnR2vtCX7CZj0LdjAPGfiCpg4Fv0y8qbOF5xPGfiCpg4F

v0y8qqbOF5x8qbOF5xn", 

"expires_in": 1800, 

"streamUrl": 

"https://directline.botframework.com/v3/directline/conversations/abc123/stream?t=RCurR_X

V9ZA.cwA..." 

} 

Send an activity to the dialogue system 
Using the Direct Line 3.0 protocol, the user and the dialogue system may exchange 

different types of activities, including message activities, typing activities, etc.  

The following snippet provides an example of how to send a text message to a dialogue 

system: 

POST https://directline.botframework.com/v3/directline/conversations/convid/activities 

Authorization: Bearer SECRET_OR_TOKEN 

Content-Type: application/json 

[other headers] 
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where convid is a string identifier of the conversation obtained after starting a 

conversation. 

The request body shall contain a JSON object describing the text message: 

{ 

    "type": "message", 

    "from": {        "id": "user1"    }, 

    "text": "hello" 

} 

If the POST request is successful, the response contains a JSON payload that specifies 

the ID of the activity that was sent to the bot. 

{ 

    "id": "0001" 

} 

Receive activities from the dialogue system 
By using the Direct Line 3.0 protocol, clients can receive activities via a WebSocket 

stream or retrieve activities by issuing HTTP GET requests. 

To retrieve messages for a specific conversation using HTTP GET, the client should 

issue the following request: 

GET 

https://directline.botframework.com/v3/directline/conversations/convid/activities?watermark

=w 

Authorization: Bearer SECRET_OR_TOKEN 

where: 

● convid is a string identifier of the conversation obtained after starting a 

conversation. 

● w is an optional watermark parameter to indicate the most recent message seen 

by the client. 

The response will be a JSON object containing new activities (messages) from the user 

and the dialogue system: 

{ 

    "activities": [ 

        { 

            "type": "message", 

            "channelId": "directline", 

            "conversation": { 

                "id": "abc123" 

            }, 

            "id": "abc123|0001", 

            "from": { 
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                "id": "bot1" 

            }, 

            "text": "Nice to see you, user1!" 

        } 

    ], 

    "watermark": "0001a-95" 

} 

Clients should page through the available activities by advancing the watermark value 

until no activities are returned. 

3.2.3 Spoken language understanding API 
A developer might want to implement dialogue management and text generation by 

himself, but does not want or has capability to develop spoken language understanding. 

In this case, a developer can use the Natural Language Understanding (NLU) API 

provided by Tilde.AI. 

The mobile app might be interested in two particular functions of NLU API: intent 

detection and entity recognition. Full documentation of these and other NLU API 

functions can be found on the Tilde.AI developer portal7. However, in this document we 

will only provide a short description of intent detection and entity recognition functions. 

Authentication 

All Tilde.AI NLU API requests must contain a subscription key in the HTTP header that 

identifies a user. This key can be obtained after signing up on the Tilde.AI developer 

portal. Below is the header example of an HTTP request with an authorisation token: 

GET https://dev-nlu1-am.azure-api.net/api/Train/languages 

Ocp-Apim-Subscription-Key: subscription_key 

Intent detection 

The intent of the given text can be detected using the following POST request: 

POST https://dev-nlu1-am.azure-api.net/api/Guess/AppId/LangId 

Ocp-Apim-Subscription-Key: subscription_key 

where: 

● AppId is the app to be used to detect the intent. It is obtained via other API 

methods (see full documentation) or by using the COMPRISE SDK. 

● LangId is the language of the text, e.g., “en-en”, “lv-lv”, etc. 

The request body shall contain a text wrapped in double quotes.  

                                                
 

 

7 Tilde.AI developer portal 
https://dev-nlu1-am.portal.azure-api.net/docs/services/natural-language-understanding-
nlu/operations/PostAddEntities 

https://dev-nlu1-am.portal.azure-api.net/docs/services/natural-language-understanding-nlu/operations/PostAddEntities
https://dev-nlu1-am.portal.azure-api.net/docs/services/natural-language-understanding-nlu/operations/PostAddEntities
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"Hello. Can you detect intent on this text." 

The response will be a JSON object containing the detected intents sorted by descending 

confidence.  

[  

 { "intentid": "greeting", "confidence": 0.607079566 },  

 { "intentid": "some_intent", "confidence": 0.261552066 },  

 { "intentid": "some_intent_2", "confidence": 0.131368339 }  

] 

Entity recognition 

The Tilde NLU API can be used to extract entities from a given text. Entities should be 

defined beforehand using specialised API functions (see full documentation) or by using 

the COMPRISE SDK. Entity recognition is available by performing an HTTP POST 

request: 

POST https://dev-nlu1-am.azure-api.net/api/Entity/AppId/LangId 

Ocp-Apim-Subscription-Key: subscription_key 

where 

● AppId is the app to be used for entity recognition. It is obtained via other API 

methods (see full documentation) or by using the COMPRISE SDK. 

● LangId is the language of the text, e.g. “en-en”, “lv-lv”, etc. 

The request body shall contain a text for which entity recognition should be performed: 

"I would like to book a flight to London” 

If the POST request is successful, the response will be a JSON object containing the 

detected entities and their position in the input.  

[  

 {  

 "dim": "@is_alive_NoNoKnowldgeAPI",  

 "body": "is_alive_NoNoKnowldgeApi",  

 "value": { "value": "is_alive_NoNoKnowldgeAPI", "type": "value" },  

 "start": 0,  

 "end": 39  

}, {  

 "dim": "@destination",  

 "body": "destination",  

 "value": { "value": "London", "type": "value" },  

 "start": 33,  

 "end": 39  

              }  

] 
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“is_alive_NoNoKnowldgeAPI” is an example entity which is hardcoded for every app for 

debugging. 

4. Conclusion 

This document presented the work performed in Work Package 3, specifically in tasks 

T3.1 and T3.2, to develop a research and technological foundation for the Initial 

Multilingual Interaction Library which will enable any user to interact with dialogue 

systems in any language. The achievement of this goal involves dealing with both 

research and development challenges.  

A “synthetic data pipeline” approach was proposed to overcome the mismatch between 

the output of the STT and the expected input of the MT. The idea is to imitate typical 

errors in the STT output by processing the MT training with a TTS and STT pipeline.  

Several MT systems were trained and evaluated. It was noticed that using synthetic data 

in MT training resulted in a clear benefit when translating STT output (we see gains about 

1.5 BLEU). The best strategy is to train MT on both original clean and synthetic parallel 

data, and then the system will be able to perform well on both written text (traditional MT 

input) and STT output.  

Although the project and the innovations developed therein have not reached completion 

yet, the evaluation has given us important insights. There are many open questions on 

how to prepare synthetic training data and it is also yet unclear how much we should ask 

the MT system to invent things that are not present in spoken language. In addition, 

these initial experiments do not try to solve the spoken language disfluency problem.  

As COMPRISE develops, more methods of STT and MT integration will be explored and 
evaluated. These newer results will be included in deliverable D3.3 which will be 
submitted to the European Commission on January 31, 2021. 

The second half of the deliverable describes the main software components that lay the 

foundation of the Multilingual Interaction Library: MT and dialogue management. 

USAAR’s dialogue platform Platon which was originally envisioned as the basis for the 

developments in COMPRISE is no longer maintained, therefore the consortium opted for 

TILDE’s Cloud-based dialogue system (Tilde.AI) as an appropriate alternative. This 

document provides documentation for the main functions of the Tilde MT API and 

Tilde.AI Dialogue system. We present a short documentation on how to authenticate 

requests to these services, how to translate a given text, send user input to the dialogue 

system and receive replies, detect intents in a given text, etc. Full, up-to-date 

documentation of these APIs is provided online (links can be found in the corresponding 

sections of the document). 
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