

Cost effective, Multilingual, Privacy-driven voice-enabled Services

www.compriseh2020.eu

Call: H2020-ICT-2018-2020

Topic: ICT-29-2018

Type of action: RIA

Grant agreement Nº: 825081

WP Nº3: Multilingual personalised

voice interaction

Deliverable Nº3.1: Initial multilingual

interaction library

Lead partner: Tilde

Version Nº: 1.0

Date: 28/02/2020

http://www.compriseh2020.eu/

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

2

1 R: Report, DEC: Websites, patent filling, videos; DEM: Demonstrator, pilot, prototype; OTHER: Software

Tools
2 PU: Public; CO: Confidential, only for members of the consortium (including the Commission Services)

Document information

Deliverable Nº and title: D3.1 – Initial multilingual interaction library

Version Nº: 1.0

Lead beneficiary: Tilde

Author(s): Askars SALIMBAJEVS (TILDE), Thomas KLEINBAUER
(USAAR)

Reviewers: Denis JOUVET (INRIA), Gerrit KLASEN (ASCO)

Submission date: 28/02/2020

Due date: 29/02/2020

Type1: R

Dissemination level2: PU

Document history

Date Version Author(s) Comments

04/02/2020 0.1 Askars Salimbajevs Draft deliverable

14/02/2020 0.2 Thomas Kleinbauer &
Askars Salimbajevs

Initial version

19/02/2020 0.3 Thomas Kleinbauer &
Askars Salimbajevs

Revision based on the reviewers’
comments

28/02/2020 1.0 Emmanuel Vincent &
Zaineb Chelly Dagdia

Final version reviewed by the
coordinator and by the project
manager

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

3

Document summary

This deliverable describes effort taken in Work Package 3 to enable any user to interact

with dialogue systems in any language.

The document focuses on the research activities and software components that form the

foundation of the “Initial multilingual interaction library”, which will combine machine

translation, speech-to-text and dialogue management.

The first part of the document is devoted to research on integration of machine translation

and speech-to-text. This integration will allow a user speaking his/her own language to

interact with a dialogue system originally developed in another language. We introduce

a “synthetic data pipeline” approach for training machine translation models that are

robust to speech recognition errors. We describe the experimental setup and empirically

evaluate our approach in different conditions. Then, the outcomes are analysed and

discussed.

The second part of the document is focused on the main software components of the

multilingual interaction library which are machine translation and dialogue management.

Because of the limitations of modern mobile devices both components are implemented

as cloud-based services. Full accurate and up-to-date documentation of both

components is provided online for developer convenience. Therefore, this deliverable

only documents the base functions of the APIs and gives references to the full

documentation.

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

4

Table of contents

1. Introduction ... 5

2. Integration of machine translation and speech-to-text ... 6

2.1 Synthetic data pipeline .. 7

2.2 Data .. 8

2.3 Evaluation results .. 9

2.4 Discussion and future work.. 10

3. Software components ... 12

3.1 Machine Translation .. 12

3.1.1 Authentication ... 12

3.1.2 List of available systems ... 12

3.1.3 Translation .. 13

3.2 Dialogue Management .. 14

3.2.1 Comparison of Tilde.AI and Platon .. 15

3.2.2 Dialogue management API ... 16

3.2.3 Spoken language understanding API .. 19

4. Conclusion .. 21

5. Bibliography .. 21

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

5

1. Introduction

The objective of Work Package 3 is to enable any user to interact with dialogue systems

in any language. This will be achieved by:

● Combining Machine Translation (MT) with Speech-To-Text (STT) and Text-To-

Speech (TTS) in order to provide a transparent interface between a user

speaking a given language and a dialogue system (or possibly a human) in

another language.

● Further combining MT with the components of a dialogue system, i.e., spoken

language understanding, dialogue management, and spoken language

generation.

● Adapting these models to every user by running additional computations on the

user’s device so as to improve performance for that user specifically.

This deliverable, entitled D3.1 – Initial multilingual interaction library, focuses on the first

two points and describes research efforts, software components and the documentation

for speech-to-text translation and the integration of dialogue systems in the operating

branch. The STT and TTS components are not described here (see Work Package 4).

Integrating MT with STT allows a user speaking his/her own language to interact with a

dialogue system in another language. This combination is not straightforward. First, we

can distinguish between two modes of translation:

● Simultaneous translation: The translated text is provided at the same time as the

speaker speaks.

● Asynchronous translation: The translated text is provided after the speaker

finishes an utterance.

Simultaneous translation reduces the delay between speech and translation and can

thus improve the user experience. This is especially important for long utterances and

monologues. However, it requires both real-time STT and real-time MT and creates a

number of additional technological and research challenges.

In COMPRISE, we are interested in voice assistant and dialogue scenarios where

utterances are usually short, and translation can be performed at the end of user input.

This allows us to focus on asynchronous translation.

Further, there are two main technical approaches for integrating STT and MT:

● Sequential speech translation: Perform speech recognition first, then translate

the recognised text.

● End-to-end translation: Use a single component (usually a neural network) to

translate to the target language directly from the audio input in the source

language.

End-to-end translation is considered to be a more promising approach. Theoretically it

allows the joint optimisation of STT and MT components for a particular task and should

be more robust. However, current end-to-end systems do not reach state-of-the-art

performance yet. Another downside to this approach is that it requires a rare kind of

training data: translated speech corpora. Such data exists only for a few languages and

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

6

in small quantities, compared to large existing corpora of parallel text and annotated

speech. Therefore, in COMPRISE, we will focus on sequential translation.

Another important issue concerns ungrammatical spontaneous spoken language: people

speak continuously without pauses and sentence breaks, often make repetitions, correct

themselves, or stop in the middle of the sentence. As stock MT expects clean input, the

aforementioned issues must be addressed in the STT output. This means either

correcting speech disfluencies before the resulting text gets translated or adapting the

MT model to handle such artifacts.

USAAR’s dialogue platform Platon which was originally envisioned as the basis for the

developments in COMPRISE is no longer maintained, therefore the consortium opted for

TILDE’s cloud-based dialogue system Tilde.AI as an appropriate alternative. This system

comprises Spoken Language Understanding, Dialogue Management, and Spoken

Language Generation in an integrated framework. Tilde.AI is an appropriate choice since

it is comparable in terms of features provided and — being provided by one of the

consortium partners — allows for individual customisation if required for the execution of

the project.

Since the dialogue system has previously been employed only in-house at TILDE, some

development effort was necessary to make the new system available to all partners in

the form of a web-API. In parallel to the technical tasks, substantial effort has been

invested into providing documentation which is also part of this deliverable.

This deliverable is structured as follows. First, we describe the research conducted on

robust integration of MT and STT. Next, we provide an introduction to the MT and

dialogue management (Tilde.AI) APIs which will be used in the operating branch of

COMPRISE. Finally, we conclude and present our plans for the remainder of the project.

2. Integration of machine translation and speech-to-

text

In this project, and as explained in Section 1, we will focus on asynchronous sequential

spoken language translation. The main problem of the sequential approach is data

quality mismatch between STT and MT:

● Due to potential recognition errors, the STT system outputs a noisy textual

representation of the spoken language. In addition, this representation does not

have any punctuation and can contain disfluent and ungrammatical parts.

● An MT system is trained on written language; therefore, it expects input to have

punctuation and be fluent and grammatically correct.

The implication of this mismatch is poor translation quality if STT and MT components

are naively combined. There are several possible approaches to tackle this issue:

● Train MT on spoken language, e.g., on transcripts of STT training data.

● Post-process STT output to adapt it for MT: insert punctuation, correct

disfluencies.

● Synthetically imitate spoken language features in the MT training data to train a

robust MT model.

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

7

Each of these approaches has its own advantages and limitations. Theoretically, training

MT on real spoken data should provide the best results. Unfortunately, STT datasets

rarely come with translations and are often too small for training modern neural MT

models. Still, if translation is available, STT data can be used for adaptation of a pre-

trained MT model.

The post-processing approach can be a good option for high-resource languages, such

as English, that have various spoken language processing tools and spoken language

datasets available. This allows the development of both data-driven and rule-based

solutions for correcting ungrammatical and disfluent utterances (Hassan et al., 2014).

For low-resource languages, however, which might not have required datasets or

processing tools, following this approach is problematic.

The idea of the third approach is to simulate STT errors in the training data of MT. There

are multiple ways to do this, for example, randomly substituting correct words by

potentially confusing words using acoustic and linguistic embedding similarity (Simonnet

et al., 2018). This approach makes MT robust to STT errors, yet additional measures are

needed to deal with ungrammatical and disfluent input. These will be investigated in

further research.

In our initial experiment, we explored the latter approach, but decided to generate data

with synthetic STT errors by using a pipeline of TTS and STT technologies, as will be

detailed in Section 2.1. The advantage of this approach is that it generates not only

substitution errors, but also insertions and deletions. In addition, it does not require

additional data and uses only already available MT training data. However, it is limited

by the availability of STT and TTS for a given language. In the case of COMPRISE, such

technologies will be available at least for the six languages (English, French, German,

Latvian, Lithuanian, Portuguese) and language pairs needed in the project.

2.1 Synthetic data pipeline

The basic idea of this approach is to convert usual MT training data to a form that

resembles the raw output from the STT system. This will introduce errors that are

typically found in speech recognition output into the training data, and thus make the MT

system more robust. We propose the following training data pre-processing pipeline (see

Figure 1):

Figure 1: The synthetic data pipeline

● Synthesise source language sentences from the MT training dataset using TTS

(the grey boxes in Figure 1).

● Use STT to transcribe the synthesised sentences (the orange boxes in Figure 1).

● Use STT transcriptions together with the original target sentences as the

synthetic MT training dataset.

Source
text

TTS STT
Synthetic
source

text

Target
text

Synthetic
source
audio

Synthetic MT training dataset

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

8

Before performing TTS and STT, the source text should be pre-processed. For example,

tokens that are pronounced incorrectly should be replaced to yield a correct

pronunciation, and tokens that are not pronounced in spoken language (e.g., special

characters) should be filtered out. Theoretically, the pre-processing step could also inject

ungrammatical and disfluent segments into sentences. This additional option will be

explored in future research.

In the initial experiment, we focus on Latvian-English speech-to-text MT. For speech

synthesis, we use three Tilde Latvian TTS voices. Each sentence is synthesised with

one of the three voices chosen at random. The source text is filtered from characters that

should not be pronounced by TTS (parentheses, quote signs, some punctuation signs).

For STT, we then use Tilde’s Latvian STT system which is based on a hybrid Hidden

Markov Model and a Time-delay Neural Network acoustic model. The language model

is implemented on a sub-word level using Byte-Pair Encoding (BPE) and consists of 4-

grams, 6-grams, and a Recurrent Neural Network language model (RNNLM). However,

in order to inject more errors into the resulting synthetic training data, only the 4-gram

language model is used here.

As raw speech recognition output contains numbers written with words instead of digits,

the MT system will have to learn how to translate words into digits. Therefore, to simplify

the training of the MT system, we apply Tilde’s in-house number normalisation tool for

Latvian which rewrites numbers as digits. In the case when number normalisation tools

are not available for a given language, raw transcripts from the STT system could also

be used as the source text for MT training.

2.2 Data

The Latvian-English WMT 2017 training dataset (Bojar et al., 2017) is used for training

the MT system. The dataset consists of three smaller datasets:

● Europarl: proceedings of the European Parliament (637,599 sentence pairs).

● RAPID: press-releases taken from the Press Release Database of the European

Commission (306,588 sentence pairs).

● DCEP: press-releases, session and legislative documents related to the

European Parliament’s activities and bodies (3,542,280 sentence pairs).

First, the data is processed by the Synthetic Data pipeline described in the previous

section. The Word Error Rate (WER) of the synthesised data was approximately 20.7%.

Then, we follow our baseline MT training recipe and pre-process the data using standard

Moses (Koehn et al., 2007) scripts for normalisation of punctuation, tokenisation, parallel

corpora cleaning, and truecasing, all of which are taken from the Moses GitHub

repository3. The data is further split into sub-word units using byte-pair encoding. For this

task, we use SubwordNMT4 (Sennrich et al., 2016).

3 https://github.com/moses-smt/mosesdecoder
4 https://github.com/rsennrich/subword-nmt

https://github.com/moses-smt/mosesdecoder
https://github.com/rsennrich/subword-nmt

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

9

For tuning, we use the NewsDev2017 dataset from WMT 2017 (2003 sentence pairs)

which is also processed using the same methods and tools.

The evaluation is performed on three datasets:

● NewsTest2017 from WMT 2017 (2001 sentence pairs).

● Synthetic NewsTest2017 which is NewsTest2017 processed by the same TTS-

STT pipeline (2001 sentence pairs).

● Real-world test set “Tilde Balss” (1159 sentence pairs).

The real-world test set is based on a subset of data collected by the Tilde real-time

Latvian STT. This subset contains 8820 utterances and 37782 words in 39 hours of audio

(including silence). Utterances come from various domains: queries, short messages,

addresses, interaction with a voice-enabled educational app, etc. In addition, it contains

a lot of “noise”: laughing, English and Russian speech, untranslatable or ambiguous

utterances, etc. Therefore, several rounds of semi-automatic filtering were performed to

select meaningful utterances from this dataset. This resulted in a dataset of 1159 Latvian

utterances which were manually translated to English.

2.3 Evaluation results

Since the paradigm-shifting success of Neural Machine Translation (NMT) systems at

the 2016 Conference on Machine Translation (WMT) (Bojar et al., 2016), and the

invention of the self-attentional Transformer architecture (Vaswani et al., 2017),

Transformer-based NMT models have become the baseline choice for MT experiments.

Therefore, for the evaluation of the synthetic data pipeline, three NMT systems with the

Transformer architecture are trained:

● Baseline:

o MT system trained on original parallel data (skipping the synthetic data

pipeline).

o Validated on just clean data (skipping the synthetic data pipeline).

● STT only:

o MT system trained on synthetic parallel data only.

o Validated on both clean and synthetic NewsDev2017 data.

● Mixed:

o MT system trained on both original and synthetic parallel data.

o Validated on both clean and synthetic NewsDev2017 data.

We use the Marian NMT toolkit (Junczys-Dowmunt et al., 2018) for the training of all

three systems and the Marian base model configuration for the model hyper-parameters.

First, trained MT systems are evaluated using the BLEU metric (see Deliverable D6.2 –

“Initial scientific evaluation” (submitted to the European Commission on February 28,

2020 − Public)) on clean and synthetic NewsTest2017 test sets (see Table 1). We use

two versions of the synthetic NewsTest2017 test set: (1) transcribed using a 4-gram

language model (like the training data) and (2) rescored by 6-gram and RNNLM. This

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

10

imitates both low- and high-quality STT scenarios. The STT WERs are 20% and 8%,

respectively.

Table 1: BLEU scores on clean and synthetic NewsTest2017 (higher is better).

System
Clean

NewsTest2017
Synthetic

NewsTest2017
Rescored Synthetic

NewsTest2017

Baseline
16.96

(16.35-17.54)
12.75

(12.24-13.24)
13.32

(12.79-13.9)

STT only
12.81

(12.23-13.37)
14.17

(13.57-14.75)
14.33

(13.75-14.89)

Mixed
16.88

(16.3-17.5)
14.51

(13.98-15.11)
15.01

(14.48-15.54)

The results show that the MT system trained on original training data performs best on

the clean test set NewsTest2017, but it is not really robust, as its quality degrades

significantly on the Synthetic NewsTest2017 which imitates STT recognition errors. The

MT system trained on synthetic data only outperforms the baseline on synthetic test sets,

but shows poor quality on clean written text. The advantages of both are combined if

both original and synthetic data is used for training. The “mixed” MT system achieves

the best BLEU scores on synthetic test sets and is very close to the baseline on the clean

original tests set.

Table 2 shows the outcome of an evaluation on the real-world Tilde Balss test set. We

use three variants of this test set: (1) reference transcripts, (2) transcribed with 4-gram

LM and (3) transcribed using the full Tilde STT system, rescored with 6-gram and

RNNLM. STT WERs are 22% and 17%, respectively.

Table 2: BLEU scores on Tilde Balss test set (higher is better).

System
Tilde Balss

(using reference text)
Tilde Balss

(4-gram only)
Rescored Tilde

Balss

Baseline 14.09 11.14 12.24

STT only 13.65 11.88 12.38

Mixed 15.69 13.50 14.12

The result is similar to the result on the synthetic test set but with one significant

exception: the MT system trained on a mix of original and synthetic data outperforms the

baseline even when translating reference human transcripts of the test set (i.e., without

STT errors). This is mainly because reference transcripts of Tilde Balss test set do not

contain punctuation.

2.4 Discussion and future work

The idea of the synthetic data pipeline is to lower the mismatch between actual STT

output and expected input of a standard MT system. This is achieved in two ways:

● Removal of punctuation and other tokens or characters that are not found in the

spoken language.

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

11

● Introduction of noise that is similar to the noise produced by STT in the real-world.

The analysis showed that the synthesised training data have the following features of

real-world STT transcripts:

● Morphology mistakes: word endings are not always aligned.

● No punctuation and no capitalisation.

● Split words: a typical STT error when one word is split into several.

● Merged words: several consecutive words can be merged together, because it is

very difficult to detect the boundaries between words in spoken language.

● Missing words: sometimes STT can skip short words.

● Wrong (but phonetically similar) lexical choice: sometimes STT fails to

disambiguate similarly sounding words.

We also noticed that the synthetic data pipeline introduces new errors that negatively

impact the MT training due to the fact that the WMT 2017 dataset contains many foreign

person names. This results in two problems:

● The TTS engines used in the synthetic data pipeline are unable to correctly

pronounce most of the foreign person names.

● While the STT system used in the initial experiment is open-vocabulary, it is still

biased to the most frequently used Latvian words and names.

As a result, the synthetic training data contains many examples where regular, frequently

used Latvian words are translated into foreign person names. When analysing the MT of

the Tilde Balss test set, we found many cases where the MT system suddenly translates

simple language, such as frequent Latvian words and names, to foreign person names.

Similar problems might arise for other named entities or terms.

In addition, the number normalisation tool sometimes makes mistakes, resulting in one

number being translated into another. Moreover, it seems that pronunciation and

normalisation of alphanumeric tokens is very ambiguous in general. This introduces a lot

of noise into the training data which is not related to speech recognition.

These problems highlight the fact that there are many open questions on how to prepare

synthetic training data. It is also yet unclear how much we should ask the MT system to

invent things that are not present in spoken language. For example, should we ask the

MT system to restore punctuation in the text, should this be done by a separate model

as pre-processing or should we just ignore this issue and output translation without

punctuation? The same question also applies to capitalisation, normalisation of numbers,

web addresses, etc. This is an area of further research within and beyond the

COMPRISE project. Nevertheless, the evaluation results allow us to conclude that:

● Mixing of clean and synthetic parallel data allows the MT system to translate both

clean and noisy data.

● Having typical STT noise in parallel data allows MT systems to learn to recover

from STT mistakes.

● An adapted MT system outperforms the baseline even in cases where the STT

worked perfectly because it learns not to depend on punctuation.

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

12

3. Software components

3.1 Machine Translation

Ideally, MT would be a part of the COMPRISE Multilingual Interaction Library and run

locally on a mobile device. However, MT is too resource-consuming and requires a large

amount of computational, run-time memory, and storage resources, which are typically

unavailable on mobile devices. Since the development of MT to run on-device would

require a separate project on its own and the development of new MT services is out of

the scope of COMPRISE, we employ the cloud-based components of Tilde MT. This

cloud service will be called by the COMPRISE SDK Client Library.

This section provides the documentation of the basic Tilde MT API functions which will

be used by the COMPRISE SDK (see Work Package 4). The full documentation can be

found at https://www.tilde.com/developers/machine-translation-api. The Tilde MT API

implements a RESTful calling style over HTTPS, i.e., all calls are inherently encrypted.

3.1.1 Authentication
All Tilde MT API requests must contain an authentication token in the HTTP header that

identifies a user of Tilde MT.

The developers of applications using COMPRISE libraries will need to contact Tilde and

get their client-id authorisation_token. It is also possible that requesting tokens could be

integrated into the COMPRISE Cloud Platform or into the SDK. Below is the header

example of a HTTP request with an authorisation token:

GET https://www.letsmt.eu/ws/service.svc/json/GetSystemList?appID=appid HTTP/1.1

client-id: authorisation_token

3.1.2 List of available systems
Tilde MT API provides a method to list available translation systems for an authenticated

user:

GET https://www.letsmt.eu/ws/service.svc/json/GetSystemList?appID=appid HTTP/1.1

client-id: authorisation_token

where appid is a string application identifier chosen by the developer.

The response will contain a JSON document containing the description of the systems

available to the user or the application. The table below presents a short description of

the main metadata entries of the MT system:

Name Type Description

ID string MT system ID

SrcLanguage complex Source language (IETF RFC 5646)

TrgLanguage complex Target language (IETF RFC 5646)

Domain string Translation domain

Title string Title of the MT system

https://www.tilde.com/developers/machine-translation-api

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

13

Description complex Description of the MT system

Metadata complex More metadata about the system

Response example:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Content-Length: 916

{

"System":[

{

"Description":{ … },

"Domain":"law",

"ID":"smt-ea364952-816a-4491-9fbc-35b41056730a",

"Metadata":[…]

}, …]}

3.1.3 Translation
Knowing the MT system ID, developers can translate plain text or text with inline tags

using the Tilde MT API:

GET

https://www.letsmt.eu/ws/service.svc/json/Translate?appID=appid&systemID=sys&text=text

client-id: authorisation_token

where:

● appid is a string application identifier.

● sys is a string translation system ID, obtained using the method in Section 3.1.2.

● text is the text to be translated (with or without inline tags).

For translating longer text, it is recommended to use the HTTP POST method:

POST https://www.letsmt.eu/ws/service.svc/json/Translate HTTP/1.1

client-id: authorisation_token

Content-Type: application/json; charset=utf-8

Content-Length: XXX

{

"appID": "appid",

"systemID": "sys",

"text": "saule spīd spoži",

"options": ""

}

If a request is successful, the response will contain the translated text:

HTTP/1.1 200 OK

Content-Length: 23

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

14

Content-Type: application/json; charset=utf-8

"the sun shines bright"

In the case of an errors the response will contain an error description:

code: 22

exception: systemNotFound

description: Translation system not found

3.2 Dialogue Management

The Dialogue Management functionality of the multilingual interaction library will be

provided by Tilde.AI’s cloud-based dialogue system (see Figure 2). This system

comprises Spoken Language Understanding, Dialogue Management, and Spoken

Language Generation in an integrated framework.

Normally, the developer of a mobile app will create a dialogue application with the

Tilde.AI dashboard by defining a dialogue scenario, intents, actions, etc. Then, the

created dialogue can be integrated into a mobile app using the Bot Service API.

In some cases, a developer might want to implement dialogue management and text

generation externally and use Tilde.AI only for spoken language understanding

functions. For these cases, a separate NLU API is provided by the Tilde.AI dialogue

system.

Interaction with the Bot Service API and Tilde.AI NLU API will be integrated into the

COMPRISE SDK Client Library, therefore developers using COMPRISE SDK will not

need to access these APIs directly.

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

15

Figure 2: Interaction between Tilde.AI dialogue system and the COMPRISE SDK Client Library.

3.2.1 Comparison of Tilde.AI and Platon
The end-of-life of the Platon system necessitated a change of dialogue platform in

COMPRISE. We opted for Tilde.AI as a replacement because it is backed by one of the

consortium partners, but also because it is comparable in terms of relevant features.

Table 3 lists the key features that both Platon and Tilde.AI cover:

Table 3: Feature comparison between Tilde.AI and Platon.

Feature Platon Tilde.AI

Approach Domain-specific language Web service

Network access Yes (via RPC)
Yes (cloud-based web

service)

Interaction with multiple

users
Yes Yes

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

16

Multilingual input/output Yes Yes

Built-in SLU Yes (rule-based)
Yes (both rule-based

and data-driven)

External SLU integration

possible?
Yes Yes

Built-in Dialogue

Management

Yes (hierarchical task

decomposition)

Yes (dialogue states,

transitions, contexts)

Built-in NLG Yes (template-based) Yes (template-based)

External NLG integration

possible?
Yes Yes

Developer interface Scripting Web interface, API

Integration of business logic

/ backend

Java Interface, Apache

Thrift

REST services,

JavaScript

This comparison illustrates the feature overlap between two systems. The individual

differences are mostly a consequence of the different architectural approaches (domain-

specific language vs. Web Service) but in general, one does not imply practical

superiority over the other. The important point to notice here is the substantial overlap of

which features are provided by both systems.

3.2.2 Dialogue management API
The Tilde.AI dialogue system is hosted on Azure Bot Service and uses Microsoft Bot

Framework for user communication. To still ensure the privacy aspect of the project, the

COMPRISE SDK Client Library can neutralise the text data before sending it to the

Microsoft servers. The preferred method of interacting with the Bot Framework is the

SDK provided by Microsoft for such programming languages and platforms as Python,

JavaScript, .NET and Node.js.

If this SDK is not available for the chosen language or if cannot be used for some other

reason, then there are several Bot Service APIs that can be called directly:

● Bot Framework REST API.

● Direct Line API.

Full documentation of these APIs can be found on Microsoft’s website5,6. Therefore, here

we will only provide a short description of base Direct Line API 3.0 functions.

5 Bot Framework REST API reference
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-connector-api-
reference?view=azure-bot-service-4.0
6 Bot Framework Direct Line API 3.0 reference
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-api-
reference?view=azure-bot-service-4.0

https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-connector-api-reference?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-connector-api-reference?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-api-reference?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-api-reference?view=azure-bot-service-4.0

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

17

Authentication
A mobile app can authenticate requests to Direct Line API 3.0 either by using a secret

obtained from the Tilde.AI dashboard or by using a token which is obtained at runtime.

The secret or token should be specified in the authorisation header of each request using

the following format:

Authorization: Bearer SECRET_OR_TOKEN

A Direct Line secret is a master key that can be used to access any conversation that

belongs to the associated bot. A secret can also be used to obtain a token. Secrets do

not expire.

A Direct Line token is a key that can be used to access a single conversation. A token

expires but can be refreshed.

Start a conversation
Direct Line conversations are explicitly opened by the mobile app and may run as long

as the user and dialogue system participate and have valid credentials. While the

conversation is open, both the dialogue system and the user may send and receive

messages.

POST https://directline.botframework.com/v3/directline/conversations

Authorization: Bearer SECRET_OR_TOKEN

If the request is successful, the response will be a JSON object containing an ID for the

conversation, a token, a value that indicates the number of seconds until the token

expires, and a stream URL that the client may use to receive activities via a WebSocket

stream:

{

"conversationId": "abc123",

"token":

"RCurR_XV9ZA.cwA.BKA.iaJrC8xpy8qbOF5xnR2vtCX7CZj0LdjAPGfiCpg4Fv0y8qbOF5xPGfiCpg4F

v0y8qqbOF5x8qbOF5xn",

"expires_in": 1800,

"streamUrl":

"https://directline.botframework.com/v3/directline/conversations/abc123/stream?t=RCurR_X

V9ZA.cwA..."

}

Send an activity to the dialogue system
Using the Direct Line 3.0 protocol, the user and the dialogue system may exchange

different types of activities, including message activities, typing activities, etc.

The following snippet provides an example of how to send a text message to a dialogue

system:

POST https://directline.botframework.com/v3/directline/conversations/convid/activities

Authorization: Bearer SECRET_OR_TOKEN

Content-Type: application/json

[other headers]

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

18

where convid is a string identifier of the conversation obtained after starting a

conversation.

The request body shall contain a JSON object describing the text message:

{

 "type": "message",

 "from": { "id": "user1" },

 "text": "hello"

}

If the POST request is successful, the response contains a JSON payload that specifies

the ID of the activity that was sent to the bot.

{

 "id": "0001"

}

Receive activities from the dialogue system
By using the Direct Line 3.0 protocol, clients can receive activities via a WebSocket

stream or retrieve activities by issuing HTTP GET requests.

To retrieve messages for a specific conversation using HTTP GET, the client should

issue the following request:

GET

https://directline.botframework.com/v3/directline/conversations/convid/activities?watermark

=w

Authorization: Bearer SECRET_OR_TOKEN

where:

● convid is a string identifier of the conversation obtained after starting a

conversation.

● w is an optional watermark parameter to indicate the most recent message seen

by the client.

The response will be a JSON object containing new activities (messages) from the user

and the dialogue system:

{

 "activities": [

 {

 "type": "message",

 "channelId": "directline",

 "conversation": {

 "id": "abc123"

 },

 "id": "abc123|0001",

 "from": {

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

19

 "id": "bot1"

 },

 "text": "Nice to see you, user1!"

 }

],

 "watermark": "0001a-95"

}

Clients should page through the available activities by advancing the watermark value

until no activities are returned.

3.2.3 Spoken language understanding API
A developer might want to implement dialogue management and text generation by

himself, but does not want or has capability to develop spoken language understanding.

In this case, a developer can use the Natural Language Understanding (NLU) API

provided by Tilde.AI.

The mobile app might be interested in two particular functions of NLU API: intent

detection and entity recognition. Full documentation of these and other NLU API

functions can be found on the Tilde.AI developer portal7. However, in this document we

will only provide a short description of intent detection and entity recognition functions.

Authentication

All Tilde.AI NLU API requests must contain a subscription key in the HTTP header that

identifies a user. This key can be obtained after signing up on the Tilde.AI developer

portal. Below is the header example of an HTTP request with an authorisation token:

GET https://dev-nlu1-am.azure-api.net/api/Train/languages

Ocp-Apim-Subscription-Key: subscription_key

Intent detection

The intent of the given text can be detected using the following POST request:

POST https://dev-nlu1-am.azure-api.net/api/Guess/AppId/LangId

Ocp-Apim-Subscription-Key: subscription_key

where:

● AppId is the app to be used to detect the intent. It is obtained via other API

methods (see full documentation) or by using the COMPRISE SDK.

● LangId is the language of the text, e.g., “en-en”, “lv-lv”, etc.

The request body shall contain a text wrapped in double quotes.

7 Tilde.AI developer portal
https://dev-nlu1-am.portal.azure-api.net/docs/services/natural-language-understanding-
nlu/operations/PostAddEntities

https://dev-nlu1-am.portal.azure-api.net/docs/services/natural-language-understanding-nlu/operations/PostAddEntities
https://dev-nlu1-am.portal.azure-api.net/docs/services/natural-language-understanding-nlu/operations/PostAddEntities

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

20

"Hello. Can you detect intent on this text."

The response will be a JSON object containing the detected intents sorted by descending

confidence.

[

 { "intentid": "greeting", "confidence": 0.607079566 },

 { "intentid": "some_intent", "confidence": 0.261552066 },

 { "intentid": "some_intent_2", "confidence": 0.131368339 }

]

Entity recognition

The Tilde NLU API can be used to extract entities from a given text. Entities should be

defined beforehand using specialised API functions (see full documentation) or by using

the COMPRISE SDK. Entity recognition is available by performing an HTTP POST

request:

POST https://dev-nlu1-am.azure-api.net/api/Entity/AppId/LangId

Ocp-Apim-Subscription-Key: subscription_key

where

● AppId is the app to be used for entity recognition. It is obtained via other API

methods (see full documentation) or by using the COMPRISE SDK.

● LangId is the language of the text, e.g. “en-en”, “lv-lv”, etc.

The request body shall contain a text for which entity recognition should be performed:

"I would like to book a flight to London”

If the POST request is successful, the response will be a JSON object containing the

detected entities and their position in the input.

[

 {

 "dim": "@is_alive_NoNoKnowldgeAPI",

 "body": "is_alive_NoNoKnowldgeApi",

 "value": { "value": "is_alive_NoNoKnowldgeAPI", "type": "value" },

 "start": 0,

 "end": 39

}, {

 "dim": "@destination",

 "body": "destination",

 "value": { "value": "London", "type": "value" },

 "start": 33,

 "end": 39

 }

]

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

21

“is_alive_NoNoKnowldgeAPI” is an example entity which is hardcoded for every app for

debugging.

4. Conclusion

This document presented the work performed in Work Package 3, specifically in tasks

T3.1 and T3.2, to develop a research and technological foundation for the Initial

Multilingual Interaction Library which will enable any user to interact with dialogue

systems in any language. The achievement of this goal involves dealing with both

research and development challenges.

A “synthetic data pipeline” approach was proposed to overcome the mismatch between

the output of the STT and the expected input of the MT. The idea is to imitate typical

errors in the STT output by processing the MT training with a TTS and STT pipeline.

Several MT systems were trained and evaluated. It was noticed that using synthetic data

in MT training resulted in a clear benefit when translating STT output (we see gains about

1.5 BLEU). The best strategy is to train MT on both original clean and synthetic parallel

data, and then the system will be able to perform well on both written text (traditional MT

input) and STT output.

Although the project and the innovations developed therein have not reached completion

yet, the evaluation has given us important insights. There are many open questions on

how to prepare synthetic training data and it is also yet unclear how much we should ask

the MT system to invent things that are not present in spoken language. In addition,

these initial experiments do not try to solve the spoken language disfluency problem.

As COMPRISE develops, more methods of STT and MT integration will be explored and
evaluated. These newer results will be included in deliverable D3.3 which will be
submitted to the European Commission on January 31, 2021.

The second half of the deliverable describes the main software components that lay the

foundation of the Multilingual Interaction Library: MT and dialogue management.

USAAR’s dialogue platform Platon which was originally envisioned as the basis for the

developments in COMPRISE is no longer maintained, therefore the consortium opted for

TILDE’s Cloud-based dialogue system (Tilde.AI) as an appropriate alternative. This

document provides documentation for the main functions of the Tilde MT API and

Tilde.AI Dialogue system. We present a short documentation on how to authenticate

requests to these services, how to translate a given text, send user input to the dialogue

system and receive replies, detect intents in a given text, etc. Full, up-to-date

documentation of these APIs is provided online (links can be found in the corresponding

sections of the document).

5. Bibliography

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., . . . & Negri, M.

(2016). Findings of the 2016 conference on machine translation. In Proceedings of the First

Conference on Machine Translation: Volume 2, Shared Task Papers (pp. 131-198).

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huang, S., Huck, M., Koehn,

P., Liu, Q., Logacheva, V., Monz, C., Negri, M., Post, M., Rubino, R., Specia, L., & Turchi, M.

(2017). Findings of the 2017 Conference on Machine Translation (WMT17). In Proceedings of the

Second Conference on Machine Translation, Volume 2: Shared Task Papers (pp. 169–214).

GA Nº: 825081 – COMPRISE – D3.1 Initial multilingual interaction library

22

Simonnet, E., Ghannay, S., Camelin, N., & Estève, Y. (2018). Simulating ASR errors for training

SLU systems. In Proceedings of the Eleventh International Conference on Language Resources

and Evaluation (pp. 3157-3162).

Hassan, H., Schwartz, L., Hakkani-Tür, D., & Tür, G. (2014). Segmentation and disfluency

removal for conversational speech translation. In Proceedings of INTERSPEECH (pp. 318–322).

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield, K., Neckermann, T., .

. . & Martins, A. F. (2018). Marian: Fast Neural Machine Translation in C++. In Proceedings of the

56th Annual Meeting of the ACL, System Demonstrations (pp. 116-121).

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., . . . Herbst, E.

(2007). Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th

Annual Meeting of the ACL, Interactive Poster and Demonstration Sessions (pp. 177–180).

Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of rare words with

subword units. In Proceedings of the 54th Annual Meeting of the ACL (pp. 1715–1725).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . & Polosukhin,

I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (pp.

5998-6008).

