

Cost effective, Multilingual, Privacy-driven voice-enabled Services

www.compriseh2020.eu

Call: H2020-ICT-2018-2020

Topic: ICT-29-2018

Type of action: RIA

Grant agreement Nº: 825081

WP Nº5: Cloud-based platform for

multilingual voice interaction

Deliverable Nº5.2: Platform hardware and

software architecture

Lead partner: TILDE

Version Nº: 1.0

Date: 27/11/2019

https://www.compriseh2020.eu/

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

2

Document information

Deliverable Nº and title: D5.2 - Platform hardware and software architecture

Version Nº: 1.0

Lead beneficiary: Tilde (TILDE)

Author(s): Askars SALIMBAJEVS (TILDE), Raivis SKADIŅŠ
(TILDE)

Reviewers: Irina ILLINA (INRIA), Gerrit KLASEN (ASCO).

Submission date: 27/11/2019

Due date: 30/11/2019

Type1: R

Dissemination level2: PU

Document history

Date Version Author(s) Comments

08/11/2019 0.1 Askars SALIMBAJEVS,
Raivis SKADIŅŠ

Initial draft version

20/11/2019 0.2 Askars SALIMBAJEVS,
Raivis SKADIŅŠ

Final version based on the
reviewers’ comments

27/11/2019 1.0 Emmanuel Vincent &
Zaineb Chelly

Final version reviewed by the
Coordinator and the project
manager

1 R: Report,
2 CO: Confidential, only for members of the consortium (including the Commission Services)

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

3

Document Summary

This deliverable defines user profiles and stories, requirements, architecture and

implementation plan for the COMPRISE Cloud platform.

The platform will allow users to upload, store and manage data and labels, and train or

access user-independent domain-specific models. Two types of data will be handled by the

platform: (1) speech and (2) text. The platform will allow users to train acoustic and language

models for automatic speech recognition (ASR), and intent detection models for natural

language understanding (NLU) on collected data. In the future, support for other types of

data and models might be added.

The main users of the cloud-based COMPRISE platform will be developers using the

COMPRISE SDK (WP4) which will exchange data and models via a REST API.

Communications between the platform and the users’ devices will be secured via state-of-

the-art encryption, and full compliance with the GDPR (e.g., regarding data retention) will be

ensured.

This platform will fill a gap in the current ecosystem: existing resource repositories are good

for speech resource description, dissemination, sharing, and distribution, but according to

our knowledge there is no platform that would facilitate speech data creation, labelling, and

curation. The COMPRISE platform will be designed and developed for these purposes.

In order to bootstrap the process when creating resources for a new language and/or a new

domain, the cloud-based COMPRISE platform will use machine translation to translate

textual training data to the new language.

The platform will also include web-based UI which will allow to sign up to the COMPRISE

platform, perform general operations and access the documentation. An initial version of this

platform will be setup during the project runtime as a demonstrator.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

4

Table of contents

1. Introduction 5

2. User requirements 5

2.1. User profiles 5

2.1.1. Client App 5

2.1.2. Developer 6

2.1.3. Data annotator 6

2.1.4. Administrator 6

2.2. User stories 7

2.2.1. Client App 7

2.2.2. Developer 7

2.2.3. Data annotator 10

2.2.4. Administrator 11

2.3. Requirements 12

2.3.1. Platform requirements 12

2.3.2. Web-based UI requirements 14

2.3.3. Non-functional requirements 15

3. Architecture 16

3.1. Infrastructure 16

3.2. Training service 18

3.3. API service 18

3.3.1. Proposed API 18

3.3.2. Authentication and authorisation 22

3.4. Web-based UI 23

4. Implementation Plan 24

5. Conclusion 25

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

5

1. Introduction
The COMPRISE Cloud platform is developed in the scope of Work Package 5 (WP5) “Cloud-

based platform for multilingual voice interaction”. The objectives of this work package are

to:

● bring together the results of WP2, WP3 and WP4 to develop a cloud-based platform

to collect users’ neutralised speech and text data and curate them.

● provide access to the user-independent speech-to-text and spoken language

understanding models trained on these data as a service via a web service API.

The current report is developed in the scope of task T5.1. “Hardware and software

architecture” and consists of the following sections:

● Section I provides an overview of WP5 objectives and the document structure.

● Section II defines the COMPRISE platform user profiles and the corresponding user

stories, details both the functional and non-functional requirements for the platform

and the web-based UI.

● Section III defines the architecture of the COMPRISE platform and details the

infrastructure, the main web services, authentication, authorisation, and the

proposed API.

● Section IV describes the implementation plan for the COMPRISE platform.

● Finally, Section V is devoted to conclusions.

2. User requirements
In order to specify user requirements for the COMPRISE Cloud platform first it is necessary

to understand who platform users will be and how they will use the platform. Therefore, the

following process was implemented:

● First, Cloud platform user profiles were defined.

● Next, for each user profile a list of associated user stories was created.

● Finally, based on these stories, functional and non-functional requirements for the

Cloud platform were specified.

2.1. User profiles

2.1.1. Client App

A Client App is an application that uses the COMPRISE SDK Client Libraries for automatic

speech recognition (ASR), natural language understanding (NLU), and/or other spoken

dialogue components and for communication with the COMPRISE Cloud platform. In order

to achieve the best possible user experience, the Client App wants to use the best ASR

and/or NLU models for the targeted usage domain. This is achieved by periodically (at

runtime): (1) uploading new neutral speech and/or text data to the cloud-based COMPRISE

platform, and (2) downloading the latest domain-specific models from the platform (e.g., on

application start). The notion of usage domain depends on the component: for ASR acoustic

modelling this typically refers to a given speech capture mode (e.g., mobile phone, smart

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

6

speaker, etc.) and a given language, while for ASR language modelling and NLU this refers

to the goal of the application (e.g., drive-thru, cooking support, medical note taking, etc.).

2.1.2. Developer

Developers use the COMPRISE SDK to create voice-enabled privacy-preserving

applications (e.g., a personal assistant). In order to achieve the best possible user

experience, they want to use domain-specific ASR and/or NLU models for the particular

usage domain of the application.

The domain-specific neutral data collected for each application and each language is

grouped into separate corpora: speech data is appended to the application’s speech corpus,

and text data is appended to the application’s text corpus. Subject to the user and the

Developer consent, these corpora can be merged into larger domains as appropriate, e.g.,

“French mobile phone speech” (merging all French mobile phone speech corpora collected

by various applications to train ASR acoustic models) or “English cooking support” (merging

all corpora collected by various cooking support applications to train ASR language models

and NLU models).

Developers use the cloud-based COMPRISE platform to manage the collected data,

process the collected data (e.g., apply machine translation) and train domain-specific user-

independent ASR and/or NLU models. After successful training, the models are downloaded

and used by the Client App.

As the collected data must be annotated, the Developers shall be able to give access to the

collected corpora to Data annotators employed by the Developer’s company.

2.1.3. Data annotator

Data annotators use the cloud-based COMPRISE platform to label domain-specific neutral

speech and text data.

They are granted access to speech or text corpora by Developers or by the Administrator.

Each Data annotator can have access to multiple corpora simultaneously.

For speech corpora, the Data annotators provide a written transcription of each audio

recording. For text corpora, the Data annotators label each user prompt in terms of intent

(NLU) or next dialog state (DM). The labelled data is then used for training domain-specific

models.

2.1.4. Administrator

The Administrator maintains the COMPRISE Cloud platform and manages global access to

its resources by creating, approving and deleting user accounts. Subject to the user and the

Developer consent, he/she can also grant access to Data annotators employed by the voice

technology company operating the platform in order to label certain data.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

7

2.2. User stories

After user profiles are defined, the next task is to define typical user stories for each user

profile.

2.2.1. Client App

ID DATA_UPLOAD

User Client App

Action Upload anonymised speech and text data to the COMPRISE platform

Motivation Provide in-domain data for training improved ASR/NLU models

Description Client App uses COMPRISE SDK Client Libraries to perform ASR and/or
NLU on data from real users.
Client App anonymises speech/text data and after authentication and
authorisation uploads it to a reserved place (appends to some corpus) on
the COMPRISE platform, where it can be used to train improved in-
domain models.

ID MODEL_DOWNLOAD_API

User Client App

Action Download trained ASR/NLU model

Motivation Use improved ASR/NLU model

Description Client App uses the COMPRISE SDK to gain access (after authentication
and authorisation) to the list of trained models available to the particular
Client App on the COMPRISE platform.
Client App can choose which ASR/NLU model it wants to download.

2.2.2. Developer

ID CORPUS_CREATE

User Developer

Action Create a reserved space (corpus) where the Client App can upload the
in-domain neutral data

Motivation Collect and group in-domain neutral data in one place

Description User logs in to the COMPRISE platform.

User goes to the list of corpora.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

8

User adds a new corpus, chooses the corpus type (speech or text) and
enters the name of the corpus
A new empty corpus is created.

ID CORPUS EDIT

User Developer

Action Edit corpus metadata

Motivation Update corpus metadata

Description User logs in to the COMPRISE platform.
User goes to the list of corpora he/she has access to.

User selects a corpus.
User can change corpus metadata.

ID CORPUS_DELETE

User Developer

Action Delete the reserved space (corpus) where the Client App can upload
the in-domain neutral data

Motivation Delete data which is no longer needed

Description User logs in to the COMPRISE platform.
User goes to the list of corpora.
User sees only corpora he/she has access to.
User selects a corpus.
User presses “Delete corpus”.
User confirms deletion.
The corpus is removed from the platform.

ID CORPUS_BROWSE

User Developer

Action Browse the list of corpora, get basic statistics

Motivation Analyse collected data

Description User logs in to the COMPRISE platform.
User goes to the list of corpora.
User sees only corpora he/she has access to.
User browses the list.
When a corpus is selected, basic information on this corpus is displayed:
name, amount of data, time and date of last modification.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

9

ID CORPUS TRANSLATE

User Developer

Action Request machine translation of text corpus

Motivation Train NLU model for new language

Description User logs in to the COMPRISE platform.
User goes to the list of corpora.
User sees only corpora he/she has access to.
User selects a corpus.
User presses “Translate corpus”, selects language and confirms corpus
translation.
The platform creates a new corpus and performs translation.
When translation is finished, User receives a notification.

ID MODEL_TRAIN

User Developer

Action Create new ASR/NLU model from in-domain neutral data

Motivation Improve ASR/NLU performance with real world in-domain data

Description User logs in to the COMPRISE platform.
User requests to train a model.
User sees the list of corpora he/she has access to.
User selects a corpus from the list.
The model training job is added to the queue.
When model training is finished, User receives a notification.

ID DEV MODEL DOWNLOAD

User Developer

Action Download trained ASR/NLU model

Motivation Integrate improved ASR/NLU model into application

Description User logs in to the COMPRISE platform.
User goes to the list of trained models he/she has access to.
User selects a model and requests download.
The model is downloaded.

ID MODEL DELETE

User Developer

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

10

Action Delete ASR/NLU model

Motivation Delete ASR/NLU model from application

Description User logs in to the COMPRISE platform.
User goes to the list of trained models.
User sees only the models he/she has access to.
User selects a model and requests to delete it.
System asks for confirmation.
The model is deleted.

ID SET_API_KEY

User Developer

Action Set access credentials for Client App

Motivation Client App needs credentials to access the COMPRISE platform API.

Description User logs in to the COMPRISE platform.
User can create new access credentials for the API.
The created credentials can be built into some Client App.
Old API credentials are automatically invalid.

2.2.3. Data annotator

ID TEXT_DATA_ANNOTATION

User Data annotator

Action Text data annotation for NLU

Motivation Neutral in-domain text data shall be adapted to be used in training

Description User logs in to the COMPRISE platform.
User goes to the list of corpora.
User sees only corpora he/she has access to.
User selects a corpus and presses “Annotate corpus”.
User sees the list of (text) utterances.
User can add/edit labels for each utterance in the corpus.
User can correct each utterance in the corpus.
User can remove utterances from the corpus.

ID SPEECH_DATA_ANNOTATION

User Data annotator

Action Speech data annotation for ASR

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

11

Motivation Neutral in-domain speech data shall be adapted to be used in training

Description User logs in to the COMPRISE platform.
User goes to the list of corpora he/she has access to.
User selects a corpus and presses “Annotate corpus”.
User sees the list of audio recordings.
User can listen to each audio recording.
User can add/edit the transcription for each audio recording.
User can remove audio recordings from the corpus.

2.2.4. Administrator

ID CREATE_DEVELOPER

User Administrator

Action Create new Developer account

Motivation Give access to COMPRISE platform to some Developer or organisation

Description User logs in to the COMPRISE platform.
User goes to the list of Developers/organisations.
User creates a new Developer/organisation account by providing name,
e-mail and other information.

ID EDIT DEVELOPER

User Administrator

Action Edit Developer account

Motivation Make corrections to the Developer account

Description User logs in to the COMPRISE platform.
User goes to the list of Developer accounts.
User selects a user from the list and presses “Edit”.
User can change group, name, email or other information.

ID DELETE_DEVELOPER

User Administrator

Action Delete Developer account

Motivation Revoke access to the COMPRISE platform

Description User logs in to the COMPRISE platform.
User goes to the list of Developer accounts.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

12

User selects a Developer from the list and presses “Delete”.
User confirms deletion.
Account is deleted from the COMPRISE platform and can no longer be
used to access it.
Resources associated with this account are deleted from the platform.

ID ADM_MODEL_DELETE

User Administrator

Action Delete ASR/NLU model

Motivation Delete ASR/NLU model from application

Description User logs in to the COMPRISE platform.
User goes to the list of trained models.
User sees all models stored on the platform.
User selects a model and requests to delete it.
System asks for confirmation.
Model is deleted.

ID ADM_CORPUS_DELETE

User Administrator

Action Delete a reserved space (corpus) where Client App can upload the in-
domain neutral data

Motivation Delete data which is no longer needed

Description User logs in to the COMPRISE platform.
User goes to the list of corpora.
User sees all corpora stored on the platform.
User selects a corpus.
User presses “Delete corpus”.
User confirms deletion.
The corpus is removed from the platform.

2.3. Requirements

2.3.1. Platform requirements

ID Requirement

FUN-001 The COMPRISE platform shall provide a complete system to collect and
annotate neutral speech and text data, train ASR/NLU models that
address the needs of:

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

13

ID Requirement

● App Developers
● Data annotators
● Speech and NLU Scientists
● Administrators

FUN-002 The COMPRISE platform shall implement multiple-level access control
for the API clients:

● Apps are only allowed to access non-destructive API methods,
i.e., data upload and model download.

● Data annotators are only allowed to annotate the corpora they
have been assigned.

● Developers have access to all functions of the platform except
user management.

● Administrators have access to all functions including user
management.

All clients are allowed to access only resources for which they have
authorisation (they own the resource or have a key for it).

FUN-003 The COMPRISE platform shall handle (store, edit, access for training,
delete) speech and text corpora for various domains.

FUN-004 The COMPRISE platform shall handle ASR and NLU models (store, train,
retrieve, delete) for various domains.

FUN-005 The COMPRISE platform shall provide a user interface to allow users to
access functionalities.

FUN-006 The COMPRISE platform shall prompt the user prior to performing any
operation that cannot be undone.

FUN-007 The COMPRISE platform shall allow the annotation of speech corpora.

FUN-008 The COMPRISE platform shall allow the annotation of text corpora.

FUN-009 The COMPRISE platform shall handle (store, assign roles, delete) user
accounts.

FUN-010 The COMPRISE platform shall handle (create, store, revoke) API access
keys.

FUN-011 The COMPRISE platform shall allow Client Apps to upload neutral
speech and text data and append them to the specified corpus.

FUN-012 The COMPRISE platform shall be able to train ASR models using a
scalable architecture able to handle big data sets and high computational
load.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

14

ID Requirement

FUN-013 The COMPRISE platform shall be able to train NLU models using a
scalable architecture able to handle big data sets and high computational
load.

FUN-014 ASR and NLU training shall be done using training tools that will be
developed in WP2 - T2.3.

FUN-015 The COMPRISE platform shall allow clients to download trained
ASR/NLU models.

FUN-016 The COMPRISE platform shall be able to perform machine translation of
text data using a cost-effective scalable service able to handle big data
sets and high computational load.

2.3.2. Web-based UI requirements

ID Requirement

FUN-017 The user interface shall be a web-based access point for the COMPRISE
platform.

FUN-018 The user interface shall allow multiple instances to run simultaneously.

FUN-019 The user interface shall provide role-based access control for the following
categories of authorised users:

● Developers
● Data annotators
● Administrators

FUN-020 The user interface shall be compatible with at least the following web
browsers:

● Microsoft Edge version 21 onwards
● Firefox from version 58 onwards
● Google Chrome from version 64 onwards
● Apple Safari 11 onwards

FUN-021 The user interface shall provide a section where authorised users can
create a new corpus for ASR or NLU.

FUN-022 The user interface shall provide a section where authorised users can
access the created corpus to view/edit metadata.

FUN-023 The user interface shall provide a section where authorised users
(Developers or Administrators) can delete whole corpora.

FUN-024 The user interface shall provide a section where authorised users can
trigger ASR/NLU model training.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

15

ID Requirement

FUN-025 The user interface shall provide a section where authorised users can
trigger text corpus machine translation.

FUN-026 The user interface shall provide a section where authorised annotators can
annotate speech recordings.

FUN-027 The user interface shall provide a section where authorised users can
annotate text data.

FUN-028 The user interface shall provide a section where Developers or
Administrators can control annotator access to corpora.

FUN-029 The user interface shall provide a section where Administrators can
create/delete Developer accounts.

FUN-030 The user interface shall provide a section where Developers can set API
access credentials for apps.

FUN-031 The user interface shall provide a section where Developers can download
trained ASR/NLU models.

FUN-032 The user interface shall provide sections where authorised Developers can
view lists of corpora, models.

FUN-033 All sections where a list of elements is displayed will include a search input
text control.

FUN-034 The user interface shall have a public main page that is accessible without
authorisation. This page should contain information about COMPRISE and
a textual description of the registration procedure to become an authorised
user of the COMPRISE platform.

2.3.3. Non-functional requirements

ID Requirement

NF-001 The COMPRISE platform and the web-based user interface shall
communicate via web services.

NF-002 The COMPRISE Cloud platform shall ensure full compliance with the

GDPR (e.g., regarding data retention) using guidelines and

recommendations from D5.1.

NF-003 Communications between the platform and the users’ devices shall be

secured via encryption.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

16

NF-004 The platform shall be scalable. Idle hardware resources shall be shut down
and additional hardware resources shall be requested on demand.

NF-005 Initial deployment and later updates of the platform shall be performed by
an automatic process.

NF-006 The COMPRISE platform shall require authentication and authorisation
from a user to access platform functionalities.

3. Architecture

3.1. Infrastructure

The COMPRISE platform is expected to work in a cloud environment as a collection of web-

services using containerisation (e.g. Docker3, Kubernetes4). Therefore, hardware and

system software management will be greatly simplified.

As seen in Figure 1, the COMPRISE platform will consist of 5 main services:

● The Authentication service will authenticate users using the standard OpenID

Connect protocol. Since there exist many high-quality authentication solutions and

providers, a new solution will not be implemented in the scope of the project. Instead

existing authentication solutions or service providers (like Azure B2C) will be utilised.

● The API service will provide COMPRISE platform functionality through an API. The

service will be implemented in the scope of the project.

● The Storage service will provide object storage through a web service. Existing cloud

storage solutions like Amazon S3 will be utilised as they provide scalability, high

availability, low latency, durability and do not require hardware administration. The

implementation of an independent storage service will be also considered.

● The Training service will provide training of ASR and NLU models. The service will

be implemented in the scope of the project and use model training modules from the

partners. For machine translation of the training data the service will use the external

Tilde MT machine translation service.

● The web UI will provide a user interface for general COMPRISE platforms functions

like registering applications, corpus annotation, triggering model training, etc.

3 https://www.docker.com/
4 https://kubernetes.io/

https://www.docker.com/
https://kubernetes.io/

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

17

Figure 1. COMPRISE platform services

In order to efficiently balance the load between services and avoid unnecessary resource

consumption, COMPRISE platform API clients will request a special upload URL from the

API service, which will allow the upload of data to the Storage service directly without the

API service acting as intermediary.

All services will be deployable as Docker containers which will allow them to run on almost

any cloud provider infrastructure. For Docker container orchestration, we are planning to

use Kubernetes.

Kubernetes scheduler and Horizontal Pod Autoscaler (HPA) will be used to run containers

only when they are requested and scale to multiple replicas when needed.

An optional gateway or proxy can be used for load-balancing, network administration and

protection.

Kubernetes cluster autoscaler will be employed to optimise cluster usage and start additional

nodes only when needed.

Authentication
service

API service Storage
service

Training
service

Us
er

Web UI

External
MT

service

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

18

3.2. Training service

The Training service is responsible for training in-domain user-independent models for ASR

and NLU using the model training modules provided by the COMPRISE partners. These

modules will be packaged as Docker containers.

The training service will not be exposed to the outside and will be available only inside the

cluster. It will receive training requests from the API service and initiate model training by

starting training containers as a Kubernetes job. The started containers will have direct

access to the training data and models in the Storage service.

Such approach makes it possible to run very different training workloads, improves

portability and simplifies dependency maintenance (dependencies and environment are

maintained inside containers).

The limitation is that it does not allow traditional distributed training on multiple machines.

We plan that in future this limitation can be lifted by using one or both of the following

solutions:

● Model training containers can call the Training service API to initiate sub-tasks.

● The Training service can be extended to submit jobs to a classic High Performance

Cluster (HPC).

Also, in the future, submission of training jobs to external entities like the European

Language Grid5 will be considered.

For machine translation of the training data, the service will use the external Tilde MT

machine translation service. In the future, support for other MT providers can be integrated.

3.3. API service

This service is responsible for providing COMPRISE platform functionality through an API.

The service will be exposed to the outside world via an optional gateway or proxy. It would

be possible to run multiple API service replicas to deal with high volume of requests.

The API service will be written in Python using the Tornado framework which provides a

non-blocking network I/O and theoretically can support tens of thousands of simultaneous

connections.

Because each Client App that will use COMPRISE SDK Client Libraries and the COMPRISE

platform represents some particular usage domain for which we want to collect data and

train models, it was decided to merge the concepts of corpus and application.

3.3.1. Proposed API

The proposed API is based on the REST paradigm.

Application entities are managed using the following REST methods:

5 https://www.european-language-grid.eu/

https://www.european-language-grid.eu/
https://www.european-language-grid.eu/
https://www.european-language-grid.eu/

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

19

Method and URL Description

GET

/applications

Retrieve the list of applications to which the

user has access.

Returns: JSON, list of ids and names.

GET

/applications/<id>

Get data for application <id>.

Returns: application JSON (see below)

POST

/applications

Create a new application, request body

contains application name and other metadata.

Input: form.

PUT

/applications/<id>

Update data for application <id>.

Input: application JSON (see below).

DELETE

/applications/<id>

Remove application <id>.

Application JSON is a dictionary that contains:

● string:name - name of the application

● guid:owner - owner/creator of the application

● string:appKey - access key for client apps

● string:speechUploadUrl - URL where to upload speech data

● string:textUploadUrl - URL where to upload text data

● string:annotatorKey - access key for Data Annotators

● string:language - language of the application (ISO 639-1)

● string:description - optional description

Both upload URLs will be unique for each application and contain some key to provide direct

access for data upload to the storage service. This allows clients to send in-domain neutral

speech and text directly to the Storage service, avoiding a possible bottleneck in the API

service.

Two different types of data are collected: speech and text.

Method and URL Description

GET

/applications/<id>/speech

Retrieve list of speech segments in the speech

corpus of application <id>.

Returns: JSON.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

20

Method and URL Description

GET

/applications/<id>/speech/<utt_id>

Download speech segment <utt_id> or

annotation (specified by query parameter).

Returns: audio file or annotation.

POST

/applications/<id>/speech

Upload speech audio (neutral in-domain data)

to speech corpus of application <id>.

Input: multipart/form-data.

DELETE

/applications/<id>/speech

Delete collection of utterances from application

<id> speech corpus.

Optional input: list of <utt_id> to delete. If no list

is specified, the whole corpus is deleted.

PATCH

/applications/<id>/speech/<utt_id>

Submit transcription for speech segment

<utt_id>.

Input: JSON (format TBD).

DELETE

/applications/<id>/speech/<utt_id>

Delete speech segment <utt_id>.

GET

/applications/<id>/text

Retrieve list of text segments (utterances) in

text corpus of application <id>

Returns: JSON.

GET

/applications/<id>/text/<id>

Get text segment <utt_id> with annotation

Returns: JSON.

POST

/applications/<id>/text

Upload text (neutral in-domain data) to text

corpus of application <id>

Input: multipart/form-data.

DELETE

/applications/<id>/text

Delete collection of text segments from

application <id> text corpus

Optional input: list of <utt_id> to delete. If no list

is specified, the whole corpus is deleted.

PATCH

/applications/<id>/text/<utt_id>

Annotate text segment <utt_id>

Input: JSON.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

21

Method and URL Description

DELETE

/applications/<id>/text/<utt_id>

Delete text segment <utt_id>

The API can be used to access models specific to a given application:

Method and URL Description

GET

/applications/<id>/models

Retrieve the list of model types.

Returns: JSON list of model types, e.g. [“ASR”,

“NLU”].

GET

/applications/<id>/models/ASR

Retrieve list of ASR models for application

<id>.

Returns: JSON document containing ASR

model metadata (see below).

GET

/applications/<id>/models/ASR/<m>

Download ASR model <m>.

Returns: binary model file.

POST /applications/<id>/models/ASR Train new ASR model using corpus

“/applications/<id>/speech”.

DELETE

/applications/<id>/models/ASR</m>

Delete ASR model <m>.

GET

/applications/<id>/models/NLU

Retrieve list of NLU models for application

<id>.

Returns: JSON document containing NLU

model metadata (see below).

GET

/applications/<id>/models/NLU/<m>

Download NLU model <m>.

Returns: binary model file.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

22

Method and URL Description

POST /applications/<id>/models/NLU Train new NLU model using one of the

following corpora:

1) corpus “/applications/<id>/text”

2) machine translated corpus

“/applications/<src>/text”

In the second case application id <src> and

target language should be provided inside

request.

NB: Application <src> must belong to the same

user as application <id>.

DELETE

/applications/<id>/models/NLU/<m>

Delete NLU model <m>.

Both ASR and NLU model JSON contain the following metadata:

● date:created - model creation date

● date:trained - model training date

● bool:latest - is this model latest?

● string:status - is this model trained?

● bool:is_mt - is this model trained on MT data.

● string:recipe - name of recipe used to train a model (TBD when training module

development is finished).

The API can also be used to train and access models trained on larger domains comprising

data collected from several applications in a similar fashion.

3.3.2. Authentication and authorisation

As mentioned in FUN-2, the API service will implement multiple levels of access for the API.
These access levels are implemented by having two types of authentication mechanisms:

● OpenID Connect authentication for Developers and Administrators using an external

authentication service.

● API key authentication for Client Apps and Data annotators.

Depending on the authentication method, access to different API methods is provided.

Platform Administrator accounts are created in the OpenID Connect service by the platform

owner.

In order to gain access to the API, Developers first sign up using the OpenID Connect

service and wait for approval by platform Administrators. Account approval is done inside

the OpenID Connect service.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

23

After approval, Developers that are authenticated by OpenID Connect have access to all

API methods for resources that they have created. Resources created by other accounts

are not visible nor accessible.

Two types of API keys exist in the platform:

● AppKey which is used by Client Apps to access limited platform functionality;

● AnnotatorKey which is used by Annotators to label collected data.

When the client is authenticated with API key X, the following rules apply:

● if X matches the AppKey of application <id>, then the client can use methods:

○ GET /applications/<id>

○ POST /applications/<id>/speech

○ POST /applications/<id>/text

○ GET /applications/<id>/models

○ GET /applications/<id>/models/ASR

○ GET /applications/<id>/models/ASR/<model>

○ GET /applications/<id>/models/NLU/<model>

● if X matches the AnnotatorKey of application <id>, then the client can use methods:

○ GET /applications/<id>/speech

○ PATCH /applications/<id>/speech/<utt_id>

○ DELETE /applications/<id>/speech/<utt_id>

○ GET /applications/<id>/text

○ PATCH /applications/<id>/text/<utt_id>

○ DELETE /applications/<id>/text/<utt_id>.

3.4. Web-based UI

The web-based UI will provide a user interface for general COMPRISE platforms functions

to fulfil the requirements specified in Section 2.3.2.

It will be implemented using an Angular web framework and packaged as a Docker container

as other services. It can be run directly in the cloud without an explicit virtual machine using

services like Azure AppService or in the same Kubernetes cluster as the other COMPRISE

platform services.

The web-based UI will allow Developers to sign-up, register applications, access API

documentation and try-out forms. An important feature of the web-based UI will be an

interface for speech and text data annotation. This interface will be available without creating

user accounts using a special URL with embedded Annotator key, which will be created by

the Developer and shared with Data annotators.

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

24

4. Implementation Plan
As the platform hardware and software architecture has been specified in this deliverable,

the next task will be to implement the platform in the scope of T5.2. As this will be a software

development task it will include all typical software development activities like setting up

environments, coding, testing, automation scripts, deployment scripts, etc. The main

challenges of this task will be as follows:

● Implementation of secure cloud-based resource storage;

● Implementation of centralised learning methods, including the implementation of a

highly scalable and dynamic cloud-based high-performance computing cluster

(model training will require high computing power, but it will be needed occasionally

when model retraining will be done);

● Implementation of an API to access the platform functionality from the COMPRISE

SDK;

● Implementation of an API to download the trained models for local usage on the

user’s device;

● Implementation of the strict data protection procedures set in D5.1.

The leading partner will be TILDE; other partners will participate in unit testing, evaluation

and integration testing.

Integration will be an important aspect of the task because components that will be

developed in WP2, WP3 and WP4 will be included in the platform or will use it through the

API.

The approach of continuous implementation will be introduced with agile project

management procedures that ensure that major objectives and general tasks are

established, controlled and adjusted according to progress.

The development process in Task 5.2 will be divided into 2-week iterations. Each iteration

will consist of several major steps – envisioning, planning, implementation and review of key

results and uncompleted tasks will be revised, and issues will be identified. This

methodology will ensure that the implementation process can be adjusted or re-prioritised

based on the results of evaluation.

There will be a project backlog that will contain all platform requirements, features that must

be implemented, tasks to be done, and unresolved issues. Backlog items will be prioritised

according to their deadlines, implementation costs and importance.

The project backlog will be used to envision and plan iterations. Items from the backlog will

be brought to the iteration plan and will be implemented during the iteration. The backlog

will be regularly updated at the end of each iteration depending on results achieved during

the iteration.

There will be development, and testing environments provided and controlled by TILDE, and

there will be acceptance and production environments that will be accessible also to project

partners. All development tasks will be done in the development environment, and the

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

25

system will be regularly (usually daily) deployed to the testing environment to test it. Once

the system has been tested, it will be deployed in the acceptance environment where it will

be accessible also by project partners. We would like to deploy the system in the acceptance

environment at the end of each iteration. Once accepted by other project partners the

updated system will be deployed in a production environment.

Although platform development will be done using an agile software development approach,

and detailed development plans will be set at the beginning of each iteration, we have a

preliminary high-level plan that outlines the main milestones in the development of the

platform.

Month Date Development milestone

M12 November, 2019 D5.2. Platform hardware and software architecture
prepared; Task 5.2 can be started

M13 December, 2019 Stub API implemented, documented and try-out forms
ready

M14 January, 2020 Data upload functionality available

M15 February, 2020 Data management functionality available

M16 March, 2020 First model training functionality available

M17 April, 2020 First Web UI available

M18 May, 2020 All major functionality available, Task 5.4 started

M19 June, 2020 Advanced user management functionality ready

M20 July, 2020 Monitoring and analytics functionality available

M21 August, 2020 All platform functionality implemented

After M21 the work on the platform will continue in the scope of task T5.4. During M22-M30

the platform will be populated with speech and dialog data and tested in several use cases

(see WP6). Necessary improvements and corrections will be identified and implemented.

5. Conclusion
This deliverable presented the hardware and software architectures of the cloud-based

platform that are being developed within COMPRISE.

In Section 2 of the deliverable, user profiles and associated user stories were defined. Based

on these, the functional and non-functional requirements for platform and web-based UI

were summarised. The second half of the deliverable described the COMPRISE platform

architecture that will be a cloud-based solution consisting of several web services.

To focus on the COMPRISE unique core functionality, existing services and solutions will

be used, where possible, for generic platform functions like authentication, storage, machine

Grant Agreement Nº: 825081 – COMPRISE – D5.2 Platform hardware and software architecture

26

translation etc. The COMPRISE functionality will be accessible via a REST API, the first

version of which is drafted in this deliverable.

Finally, a COMPRISE platform implementation plan was described in the last section of the

deliverable.

