
 

 

 

Cost effective, Multilingual, Privacy-driven voice-enabled Services 

www.compriseh2020.eu 

 
Call: H2020-ICT-2018-2020 

Topic: ICT-29-2018 

Type of action: RIA 

Grant agreement Nº: 825081 

 

 

WP Nº4: Cost-effective multilingual 

voice interaction  

Deliverable Nº4.1: SDK software architecture 

Lead partner: ASCO 

Version Nº:  1.0 

Date: 29/11/2019 

                                             

           

 

 

 

http://www.compriseh2020.eu/


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

2 

                                   

 

 

 

  

                                                
 

 

1 R: Report, DEC: Websites, patent filling, videos; DEM: Demonstrator, pilot, prototype; ORDP: Open 
Research Data Pilot; ETHICS: Ethics requirement. OTHER: Software Tools 
2 PU: Public; CO: Confidential, only for members of the consortium (including the Commission Services)  

Document information 

Deliverable Nº and title: D4.1 –  SDK software architecture 

Version  Nº: 1.0 

Lead beneficiary: ASCO 

Author(s): Gerrit Klasen 

Reviewers: Raivis Skadiņš, Askars Salimbajevs (TILDE), Aurélien 
Bellet (INRIA) 

Submission date: 29/11/2019 

Due date: 30/11/2019 

Type1: R 

Dissemination level2:  PU 

Document history 

Date Version Author(s) Comments 

04/10/2019 0.1 Gerrit Klasen First draft of the deliverable 

08/11/2019 0.2 Gerrit Klasen Completed, not reviewed version 

20/11/2019 0.3 Gerrit Klasen Review comments processed 

29/11/2019  1.0 Emmanuel Vincent & 
Zaineb Chelly  

Final version reviewed by the 
Coordinator and the project manager 

    

    

    

    

    

    



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

3 

Document summary 

This deliverable (D4.1) is the initial deliverable of WP4 which is about cost-effective 

multilingual voice interaction. It explains the architecture of the COMPRISE SDK which 

is aligned to T4.1. 

The COMPRISE SDK integrates, and interfaces multiple algorithms, APIs and tools 

developed within the COMPRISE project, which are needed for the development of 

multilingual, voice-enabled applications. Well-defined interfaces are presented to the 

developer to easily access a desired functionality.  Besides the language abstraction, 

the SDK allows their users to compile their output cross-platform and to create 

executable applications both for Android and iOS.   

This deliverable explains the needs and purposes of the SDK in the way described above 

and why the project is not relying on existing SDKs available in the market and which 

provide a similar functional behaviour. 

The actual architecture is presented within a global COMPRISE environment 

representation. It contains multiple types of components which are introduced separately 

(Operating and Training Branch, as well as the COMPRISE Cloud Platform). A plan is 

also provided which describes how everything is implemented and how it is documented 

in a proper way. 

An implementation plan has been developed to ensure that the integration finishes within 

the given timeframe, respecting due dates of other components. 

  



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

4 

Table of contents 

1. Introduction ............................................................................................................ 5 

2. Purpose of the SDK ............................................................................................... 5 

3. SDK Architecture ................................................................................................... 6 

3.1 Global Vision ...................................................................................................... 7 

3.2 COMPRISE SDK Developer UI ........................................................................ 10 

3.3 COMPRISE SDK Client Library ........................................................................ 15 

3.3.1 Operating Branch ......................................................................................... 15 

3.3.2 Training Branch ............................................................................................ 22 

3.4 COMPRISE Cloud Platform API ....................................................................... 26 

3.5 Future Documentation ...................................................................................... 27 

4. Implementation Plan ............................................................................................ 28 

5. Conclusion ........................................................................................................... 35 

 

  



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

5 

1. Introduction 

WP4 “Cost-effective multilingual voice interaction” aims to reduce the cost for developers 

implementing and deploying multilingual, voice-enabled solutions. The work package is 

addressing two ways to solve this problem. Firstly, weak (automatic) labelling methods 

are being developed to allow the transfer of Speech-To-Text and Spoken Language 

Understanding systems to new domains where the requirement for laborious and time-

consuming manual labelling would stand in the way of rapid adoption. This weak labelling 

is compatible with privacy guarantees. Speech-To-Text and Spoken Language 

Understanding models are then trained using both strongly and weakly labelled data. 

Secondly, a Software Development Toolkit (SDK) is being developed, giving access and 

interfaces to all the functionalities needed in an easy and holistic way. 

This deliverable is about the architecture definition of the SDK. It explains both the need 

and purpose of the SDK for the COMPRISE project, as it is described after this 

introduction in Section 2. A differentiation is given why the consortium decided not to use 

similar toolkits present in the market.  

Section 3 describes the concrete content of the SDK, beginning with its positioning in the 

whole COMPRISE environment and its relation to additional entities like the COMPRISE 

Cloud Platform, the COMPRISE Apps, developers in their local environment, and other 

services. Afterwards, it states how the toolkit is realised on a technical level and how the 

functionality is represented for the user. The same is done for the components which are 

included into the Apps generated by the toolkit. They are containing both components 

already present in the market (Operating Branch) and some being created within this 

project (Training Branch). An insight is also given on how the SDK needs to interface to 

the COMPRISE Cloud Platform and why. Finally, Section 3 states how everything is 

documented to make everything well-understandable for developers.  

As the SDK integrates multiple COMPRISE components, it forms one of the core outputs 

of the project. Finalising the SDK on time is highly important. Therefore, an 

implementation plan is provided in Section 4. Additionally, this plan must respect the 

delivery dates of the training branch components developed within COMPRISE. 

2. Purpose of the SDK 

The COMPRISE SDK is a toolkit including a developer UI and client libraries to help 

developers to implement multilingual, privacy-aware, voice-enabled applications.   

To achieve this, the SDK offers compactly bundled functionalities to its users, so that 

they can easily include all needed functionalities in a voice-enabled application. This 

avoids developers having to search for multiple interfaces and libraries like Speech-To-

Text, Machine Translation, Natural Language Understanding, and many more on their 

own, or even to implement such functionalities by themselves. Hence, the SDK is 

suitable for rapid prototyping, and first voice-enabled applications can be quickly created. 

This leads to cost savings in terms of human resources. Firstly, the developers of these 

applications need much less time to complete their task, which reduces the cost for 

employers. Secondly, less expertise is needed to build the product, which translates into 

lower salaries hence additional cost savings for employers. 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

6 

There exist multiple SDKs for developing voice-enabled applications on the market, 

which are also designed to achieve cost savings. Examples are Siri for Developers3 by 

Apple, AVS Device SDK4 by Amazon, Google Assistant SDK by Google5, just to name 

the biggest ones. 

The COMPRISE SDK is required since it does not just reduce the development cost: it 

also addresses two other specific objectives of COMPRISE: Privacy-by-design and 

Inclusiveness. These two additional key objectives cause cost-effectiveness to become 

a focus again. Indeed, new solutions must be found for the three objectives to be jointly 

achieved.  

Additionally, the competitors out in the market are usually limited to one language and / 

or have problems to understand users talking with interruptions, accents and other 

conditions. The development of multilingual voice-enabled applications is hence 

complicated, error-prone and time-consuming. The COMPRISE SDK supports the 

creation and usage of multilingual voice-enabled applications. The users of COMPRISE 

Apps are able to speak in their own language to interact with a dialog system in another 

language. They also benefit from better system performances, if the way they speak is 

unusual. 

In addition, Apps created with this toolkit remove any kind of privacy-related information 

from the user’s input before it is sent outside of the user’s device. The SDK Client Library 

contains data transformation components to delete as much private information as 

possible from the users’ speech and text, while preserving enough information to label 

the resulting “neutral” data manually if needed and to train large-scale user-independent 

Speech-To-Text, spoken language understanding, and dialog management systems on 

these “neutral” data in the cloud. Compared to competitors who merely claim not to share 

or abuse users’ data, the COMPRISE SDK includes technical solutions to actively protect 

sensitive contents. 

3. SDK Architecture 

The project needs to provide ways for developers to easily use the COMPRISE 
functionalities for their own application development. The answer to this requirement is 
the COMPRISE SDK, whose role is introduced within the global system environment first 
(Section 3.1). Afterwards, the usage of the toolkit itself, the SDK Developer UI, is 
explained in Section 3.2. This includes the usage of all components, summarized within 
the SDK Client Library. It is running on the client device as presented in Section 3.3. The 
Developer UI  gives the possibility for developers to train and maintain their models within 
the COMPRISE Cloud Platform (Section 3.4). The provided toolkit also needs to contain 
extensive documentation to allow developers to easily understand the provided 
functionality and how to use it (Section 3.5). 

The COMPRISE SDK builds a foundation, which can be shared throughout different 

platforms including Android and iOS. The SDK Client Library integrates the following 

tools which already individually exist on the market (in the following: Operation Branch). 

These are mainly responsible for speech interaction: 

                                                
 

 

3 https://developer.apple.com/siri/ 
4 https://developer.amazon.com/de-DE/alexa/alexa-voice-service/sdk 
5 https://developers.google.com/assistant/sdk 

https://developer.apple.com/siri/
https://developer.amazon.com/de-DE/alexa/alexa-voice-service/sdk
https://developers.google.com/assistant/sdk


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

7 

 Speech-To-Text 

 Machine Translation  

 Spoken Language Understanding  

 Dialog Management 

 Spoken Language Generation 

 Text-To-Speech. 

The SDK Client Library also integrates the results produced within the COMPRISE 
project (in the following: Training Branch), especially regarding privacy awareness and 
user inclusiveness: 

 Privacy-Driven Speech Transformation 

 Privacy-Driven Text Transformation 
 Personalised Learning. 

The Operation and Training Branches exist within the whole system environment and 

also refer to the COMPRISE Cloud Platform. Within the context of the deliverable, only 

the SDK-relevant subcomponents are described.  

The SDK provides interfaces to the COMPRISE Cloud Platform which allow COMPRISE 
developers to do the following tasks: 

 Training of speech recognition models to be used by the App 

 Management of these models 

 Management of the neutral training data sent by the app 

 Authentication and Authorisation to perform actions on the Platform 

 Analytics of the present data. 

The SDK is complemented by a documentation, consisting of: 

 A description of how to install and use the SDK interface, as well as a technical 
overview of how the toolkit works in an external document. 

 An explanation about the COMPRISE client components included in the Client 
Library and about their functionality in the corresponding GitLab6 repositories.  

 Swagger documentation about all the APIs used in the SDK during the App 
creation. This especially affects the SDK Developer UI itself (as the Developer UI 
is a webpage connecting to internal backend micro-services) and the interrelation 
to the COMPRISE Cloud Platform. 

3.1 Global Vision 

Figure 1 shows the whole system environment and the global architecture of the project, 

including the role of the SDK. The system can be subdivided into four major parts: 

COMPRISE SDK Developer UI (Developer’s machine / Local desktop environment) 

This is for the actual developer using his / her client machine, on which the SDK can be 

installed locally. The SDK Developer UI consists of multiple backend (micro-)services 

coordinated by the Express.js7 Framework, which the user is able to access via a 

browser of his / her choice. During implementation, the user broadly designs the App by 

adding simple template bundles consisting of HTML, CSS and JavaScript to the App. 

                                                
 

 

6 https://gitlab.inria.fr/comprise 
7 https://expressjs.com/ 

https://gitlab.inria.fr/comprise
https://expressjs.com/


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

8 

These templates contain all COMPRISE related interfaces and functionality which need 

to run on a client device. The user also trains linguistic models within the COMPRISE 

Cloud Platform, through interfaces provided by the SDK. They are trained and stored 

into the cloud, where future client Apps download them later to make usage of them. As 

the toolkit needs to support cross-platform development, it has been decided to let 

Angular8 be the technical foundation of the App, as it is suitable to be compiled to both 

Android and iOS phones, and it can be easily modified by adding or removing HTML, 

CSS and JavaScript. The framework to execute the compilation to native devices is 

Ionic9.  

COMPRISE App (Client’s (mobile) device / Smartphone) 

This is the actual output of the SDK generation process. The App is a native Android 

(Java code) or iOS (Swift code) representation based on an Angular App compiled by 

the Ionic framework. It contains all Client Library components needed for multilingual, 

privacy-aware voice interaction, which are summarised in Section 3.3. During runtime, 

the App neutralises both speech and text input with the help of privacy-aware speech 

and text transformations and sends it to the COMPRISE Cloud Platform, where it is used 

for additional training purposes. The App receives domain-specific models from the 

Cloud, to be later reused in the Automatic Speech Recognition component, as well as 

for Natural Language Understanding and Dialog Management. These models are not 

only trained on the COMPRISE Cloud Platform but also personalised within the App 

regarding accents or “hard-to-understand” users to achieve a better user experience. 

COMPRISE Cloud Platform 

It gives the developer access to several functionalities: Model Training, Model 

Management, Neutral Training Data Management, Analytics, Authentication and 

Authorisation. The exact interfaces and requirements are described within D5.2 

“Platform hardware and software architecture”. The main purpose is to allow developers 

to securely store, curate and label data and to provide access to user-independent 

models trained on these data. These models are used later on by the COMPRISE SDK 

Client Library within the COMPRISE App, where personalised learning takes place. To 

protect the privacy of the user, the neutralisation components are executed on the client. 

Then, once free of sensitive information, the resulting neutral content is sent to the 

COMPRISE Cloud Platform for training purposes.  

Other Cloud Services 

Other cloud services host components which are not related to the COMPRISE Cloud 

Platform. These are typically Operation Branch components which require more 

computing power than available on the client device. For example, Machine Translation 

is affected by this, as it needs to run on powerful servers to guarantee an acceptable 

performance. Like the COMPRISE Cloud Platform, these other services are not 

accessible by unauthorised parties and privacy-aware neutralisation is employed before 

the submission of any data.   

                                                
 

 

8 https://angular.io/ 
9 https://ionicframework.com/ 

https://angular.io/
https://ionicframework.com/


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

9 

 

Figure 1: COMPRISE global architecture.  



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

10 

3.2 COMPRISE SDK Developer UI 

The COMPRISE SDK offers a Graphical User Interface (GUI) editor to allow application 
developers to use the implementation of end-user interfaces for their solutions. The SDK 
is accessible as a plain browser. This browser is connected to multiple, external (micro-) 
services which run at the backend and execute the commands given within the browser. 
This also delivers callbacks to the browser UI if needed. These services provide large 
ranges of visual templates implemented in HTML and CSS, as well as the COMPRISE 
Clients Component’s related functionality in JavaScript / TypeScript. Developers can 
combine them within the Developer UI to preview the future COMPRISE App. The 
templates can stand for themselves (e.g., customised GUI elements or simple panels) 
or contain/bind to additional behavior and JavaScript logic (e.g., Microphone button 
enabling Speech-To-Text). Application developers, thus, have a high degree of flexibility 
and power as there are barely any restrictions in merging templates. The editor still 
develops an abstraction layer concept, subordinating the entities into abstraction levels.  

Example: 

Layer 0: Application-Body 

 Layer 1: Page 

  Layer 2: Microphone Button 

 Layer 1: Page 

  Layer 2: About us Dialog 

This strategy produces additional guidance for the developer and speeds up the process 
of rapid prototyping. The editor also allows the inheritance of external configurations like 
translations for internationalisation, as well as internal and individual configurations or 
attributes for each template. 

The Toolkit is split into two parts:  

Server-Side component(s) 

This component is doing all the logic and consists of multiple micro-services working 
together. They listen to user inputs, transform them into a clickable, virtual prototype (= 
future COMPRISE App) and return a preview back to the user. From a technical point of 
view, the micro-services are likely to be coordinated within the Express.js10 environment 
which is a “minimal and flexible Node.js web application framework that provides a robust 
set of features for web and mobile applications”. Within here, RESTful APIs are provided 
and are connected to the client interface. 

Client-side component 

This component is nothing more than a single HTML file processing the user input. It 
accepts various user commands to create an App and forwards them to the server. 
Based on the prototype delivered back, users have the possibility to insert other 
commands. 

Figure 2 gives a short overview of the workflow. A client wants to create a template called 
“XYZ” within his/her COMPRISE App. The client sends the task to the server, where a 

                                                
 

 

10 https://expressjs.com/ 

https://expressjs.com/


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

11 

central component forwards the task to subsequent micro-services. They investigate 
how the task is translated into a viewable representation and include all GUI 
(HTML/CSS), Logic (JS) or global settings and translations for the App’s panels (JSON) 
bound to the chosen template. After the required building blocks have been collected, 
they are combined and nested within each other. The resulting output is a clickable 
prototype of an App and is presented back to the client.  
 

 

Figure 2: Application component inclusion. 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

12 

As COMPRISE is about multilingual applications, besides the support of user inputs in 

various languages, the SDK also needs to provide internationalisation aspects for the 

text panels used. The UI provides the possibility for developers to assign translations for 

multiple languages to a certain language key. These keys can be matched to the panels 

which show the desired language. Figure 3 shows the procedure with some example 

languages. The user can assign as many translation key/value pairs as he or she wants, 

and assign them to related panels, popups, tooltips, alerts and similar.  

 

Figure 3: Internationalisation for App panels. 

In the course of the project, the SDK supports this functionality with the languages of the 

project partners, which are: 

 English 

 French 

 German 

 Latvian 

 Lithuanian 

 Portuguese. 

When the developer has reached a prototype of the COMPRISE App and assigned 

translations to the textual representation, as a next step, he/she needs to train domain-

specific user-independent models for Speech-To-Text and/or Spoken Language 

Understanding for usage in the application. 

Concerning Natural Language Understanding, for example, Figure 4 shows how SDK 

users can assign multiple questions to intents and train an intent detector.  

This could be done with the usage of existing interfaces from TILDE.AI (as it is used for 

Spoken Language Understanding, Dialogue Management and Natural Language 

Generation, see Section 3.3.2). The models generated are available in the COMPRISE 

Cloud Platform later. The interfaces are used to train models which are reused within the 

Client Library, as explained in the following (Sections 3.3 and 3.4). 

The UI representation of this can be done as shown for the text panel internationalisation 

or the Spoken Language Understanding training example, for instance. Also, it is 

possible to embed already existing user interfaces from TILDE.AI as an iframe instead. 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

13 

The concrete way on how to support these user interfaces within the SDK is under 

discussion now. 

Developers can also make usage of the COMPRISE Cloud Platform UIs for model 

analytics purposes for example, which can be embedded within the SDK UI. Before users 

can access this functionality, they need to authenticate and be authorised to access the 

COMPRISE Cloud Platform. The exact specifications are found in D5.2 “Platform 

hardware and software architecture”. 

 

Figure 4: Intent detection training within the SDK. 

Once this is done, one could build the app. A preview of the result will be shown directly 

within the Developer UI to give the developer a chance to do additional quick changes 

before the App is deployed. As most of the functionalities are auto-generated to ease the 

programming process for the user, he/she still might need to implement his/her own 

modifications. The toolkit therefore grants access to major parts of the generated source-

code directly within the Developer UI without the need of opening it within an external 

IDE. The final step is the deployment of the solution towards the client device. This 

workflow is illustrated in Figure 5: Overview of the SDK workflow.. 

To summarise, COMPRISE developers style their App broadly in terms of optical 

representation and logic. They ensure internationalisation for the App’s visual 

representation in the form of panels. They mainly train and manage models, which will 

be used by the App. The App is built, which generates previews to check on again within 

the editor. Once all the work is done, the user deploys the App to smartphones.  

 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

14 

 

Figure 5: Overview of the SDK workflow. 

The SDK Developer UI can be found in the COMPRISE GitLab. An NPM package is not 

provided, as the SDK Developer UI is not a Client Library itself, but a framework to use. 

The source acts as a reference for the current status of the solution over the deliverable 

milestones (additionally to a downloaded archive) and the project lifetime in general. 

Component Name  COMPRISE SDK Developer UI 

Responsible Partner ASCO 

Most relevant 

deliverables 

 D4.1 “SDK software architecture”, R, PU, M12  

 D4.3 “Initial COMPRISE SDK prototype”, R+DEM, PU, 
M21 

 D4.5 “Final COMPRISE SDK prototype and 
documentation”, R+DEM, PU, M30 

GitLab-Repository https://gitlab.inria.fr/comprise/comprise_sdk_developer_ui 

NPM-Repository - none - 

https://gitlab.inria.fr/comprise/comprise_sdk


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

15 

3.3 COMPRISE SDK Client Library 

The COMPRISE SDK Developer UI is designed to deploy multilingual, privacy-aware 

Apps which reuse the models trained on the COMPRISE Cloud Platform. To achieve 

this, the SDK must include suitable interfaces into the deployed App, which can receive 

these models. Additionally, standard voice technology must be included to ensure voice-

enabled behaviour itself. Parts of the App also need to neutralise both spoken and textual 

information to support privacy awareness. 

These requirements make it necessary to provide a Client Library, which carries the 

various COMPRISE-related components and functionalities listed above. Although each 

component may be used individually, the components are categorized into Operation 

Branch vs. Training Branch components. They are detailed in the following two 

subsections.  

As introduced in the beginning of Section 3, the Operation Branch is mainly about the 

speech interaction itself which is not in the scope of COMPRISE. Existing solutions are 

reused from the market and these are: 

 Speech-To-Text 

 Machine Translation  

 Spoken Language Understanding  

 Dialog Management 

 Spoken Language Generation 

 Text-To-Speech. 

The Training Branch entities are being developed over the project lifetime and ensure 
the realisation of some of the overall and specific project goals like privacy-driven 
transformation, and language model personalisation or inclusiveness: 

 Privacy-Driven Speech Transformation 

 Privacy-Driven Text Transformation 
 Personalised Learning. 

The library is provided in GitLab for maintenance reasons, as well as an installable library 

on NPM which is used for the client device. 

Component Name  COMPRISE SDK Client Library 

Responsible Partner ASCO / All 

Most relevant 

deliverables 

None for the Operation Branch as components exist.  

Training Branch related deliverables are mentioned in Section 

3.3.2. 

GitLab-Repository https://gitlab.inria.fr/comprise/comprise_sdk_client_library  

NPM-Repository https://www.npmjs.com/package/comprise_sdk_client_library  

3.3.1 Operating Branch  

The Operating Branch consists of a set of components which are used to ensure user-

interaction, namely chains of speech and language processing tools. They allow voice-

enabled behaviour with the user in terms of understanding the content given, properly 

fulfilling the tasks given by that command, and providing a suitable answer. For instance, 

https://gitlab.inria.fr/comprise/comprise_sdk_client_library
https://www.npmjs.com/package/comprise_sdk_client_library


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

16 

a speech command telling to order a bottle of wine would cause the system to add an 

order into the shopping list, generating the order itself and verbally informing the user 

that the order has been completed. As described in Section 2, this kind of functionality 

already exists on the market with good performance. The architecture of the SDK adapts 

this already approved behaviour as the project does not aim to reinvent the wheel, and 

it focuses on other aspects instead. Nevertheless, the Operating Branch features a few 

differences in comparison to existing solutions: 

1. Some of the Operating Branch components run locally on the user’s device. This is 
done to reach a higher degree of privacy for the user, as the App then does not need 
to send voice data with potentially sensitive information to the cloud. Rather than 
asking the user to trust the cloud provider not to misuse his/her data, COMPRISE 
SDK-Developer-UI-generated Apps process the data locally as much as possible. 
Certain components, for example Machine Translation or Spoken Language 
Understanding, may still run within the cloud due to performance reasons - or other 
reasons. In that case, the Client Library neutralises the sensitive content prior the 
use of non-local components.  

2. The Operating Branch includes on-the-fly Machine Translation. Compared to other 
intelligent virtual assistants, this allows the users of COMPRISE Apps to interact 
with the App verbally, even when their mother tongue is not a popular language. 
Reusing the example of ordering a bottle of wine, competing virtual assistants would 
not be able to fulfil this task when the wine distributor only allows English language 
as an input. This would exclude non-English speaking users. Including Machine 
Translation, COMPRISE SDK-Developer-UI-generated solutions allow the 
translation from niche languages into the pivot needed to execute in-App 
commands, and translate the result back into the language of the speaker. 

3. Like other solutions, voice-related components are aligned with the language 
models they use. As presented in Section 3.3.2, COMPRISE Apps contain 
Personalised Learning modules. They are responsible for receiving domain-specific, 
neutral models that have previously been trained within the Cloud Platform. These 
models become personalised models as they are customised by the Personalisation 
module from the Training Branch. They are assigned to the corresponding 
components again after modification. So, the Operation Branch components like 
Speech-To-Text, Natural Language Understanding or Dialog Management, are not 
affected, but work with continuously updated models, which lead to an improved 
user experience, for instance for accented or hard-to-understand users.  

 

The tables below list the details of every Operation Branch component. As mentioned, 

every entity is already available on the market and can be included in the COMPRISE 

environment with a different degree of effort. The components are not modified regarding 

their functionalities, as they are not the core focus of the project. 

Each component is introduced via its actual name, a short description of the provided 

functionality, and via the specification of the partners who are involved in the integration 

process or in the component development itself. As the components need to be 

compatible with Android and iOS, investigations have been made for suitable technical 

solutions for both operating systems. The results are reported with their names and their 

corresponding source URLs. After performing the modifications needed for integration, 

for further usage and if needed, the modified components are both published on GitLab 

for future work, and on NPM as a package which then can be installed on the client 

device. If running locally, the content represents the component itself. If the components 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

17 

functionality runs in the Cloud, the repository represents the client API. Optionally, 

additional comments are made if special conditions are present for a certain component. 

For some components the needed functionality can be executed in JavaScript/Typescript 

only and does not need a middleware or wrapper to native code to access the device 

functionality. In this case, only the installation of the NPM package is needed. For other 

components a wrapper is needed. The Cordova11 framework is used to fulfil this task. 

This requires the additional installation of the Cordova component in addition to the NPM 

package. 

 

Component Name  Speech-To-Text (STT) 

Responsible Partner ASCO / All 

Description Receives speech input from the App user 

and transforms it into a textual 

representation.  

Planned / Current Technical Solution for 

Android  

Kaldi Speech-To-Text12 (Android 

adaptation) 

Repository / URL https://github.com/alphacep/kaldi-android 

Planned / Current Technical Solution for 

iOS 

Kaldi Speech-To-Text (iOS adaptation) 

Repository / URL https://github.com/edwardvalentini/kaldi-

ios-poc 

GitLab-Repository for COMPRISE https://gitlab.inria.fr/comprise/comprise_s

peech_to_text 

NPM-Repository for COMPRISE https://www.npmjs.com/package/cordova

-plugin-comprise-speech-to-text 

Cordova-Plugin? Yes (Kaldi is native Code) 

Additional Comments Realised as a Cordova13 Plugin  

 

Component Name  Machine Translation (MT) 

Responsible Partner ASCO / TILDE 

                                                
 

 

11 https://cordova.apache.org/ 
12 https://kaldi-asr.org/ 
13 https://cordova.apache.org/ 

https://github.com/alphacep/kaldi-android
https://github.com/edwardvalentini/kaldi-ios-poc
https://github.com/edwardvalentini/kaldi-ios-poc
https://gitlab.inria.fr/comprise/comprise_speech_to_text
https://gitlab.inria.fr/comprise/comprise_speech_to_text
https://www.npmjs.com/package/cordova-plugin-comprise-speech-to-text
https://www.npmjs.com/package/cordova-plugin-comprise-speech-to-text
https://cordova.apache.org/
https://kaldi-asr.org/
https://cordova.apache.org/


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

18 

Description Transmits the textual, privacy-neutralised representation of the 

user’s voice input to other COMPRISE Cloud Services. There, 

TILDE’s Machine Translation framework translates from the 

input language to a pivot language, and returns the result back 

to the client app, before processing by the Spoken Language 

Understanding  component.  

Machine Translation is also needed after the Natural 

Language Generation component has created an answer in 

the pivot language. This answer is translated back into the 

user’s input language in the same way. 

Planned / Current 

Technical Solution 

for Android  

TILDE’s Machine Translation API 

Repository / URL https://tilde.com/developers/machine-translation-api 

Planned / Current 

Technical Solution 

for iOS 

- same as for Android - 

Repository / URL - same as for Android - 

GitLab-Repository 

for COMPRISE 

https://gitlab.inria.fr/comprise/comprise_machine_translation  

NPM-Repository for 

COMPRISE 

https://www.npmjs.com/package/comprise_machine_translati

on 

Cordova-Plugin? No 

Additional 

Comments 

The Machine Translation component requires too much 

computational power to run with an acceptable performance 

on the client device. Therefore, Machine Translation is running 

within other COMPRISE Cloud Services, being accessed 

through an API within this component.  

This component can surely be replaced by locally deployed 

solutions after the project lifetime, as soon as the footprint of 

future solutions (e.g., the one currently being developed by the 

Bergamot project for desktop browsers) has reduced enough, 

or smartphone hardware has become powerful enough to fulfil 

the requirements. 

 

Component Name  Spoken Language Understanding (SLU) 

Responsible Partner ASCO / TILDE 

https://tilde.com/developers/machine-translation-api
https://gitlab.inria.fr/comprise/comprise_machine_translation
https://www.npmjs.com/package/comprise_machine_translation
https://www.npmjs.com/package/comprise_machine_translation


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

19 

Description Within COMPRISE, takes textual user input in a pivot language 

and analyses it to figure out the intent of the user, on which the 

dialog management can react. 

Planned / Current 

Technical Solution 

for Android  

TILDE.AI14 

Repository / URL https://dev-nlu1-am.portal.azure-api.net/ 

Planned / Current 

Technical Solution 

for iOS 

- same as for Android - 

Repository / URL - same as for Android - 

GitLab-Repository 

for COMPRISE 

https://gitlab.inria.fr/comprise/comprise_natural_language_un

derstanding  

NPM-Repository for 

COMPRISE 

https://www.npmjs.com/package/comprise_natural_language

_understanding 

Cordova-Plugin? No 

Additional 

Comments 

The Natural Language Processing (i.e., Spoken Language 

Understanding + Dialogue Management + Natural Language 

Generation) component requires too much computing power 

to run with an acceptable performance on the client device. 

Therefore, Spoken Language Understanding runs within other 

COMPRISE Cloud Services, being accessed through an API 

within this component.  

This component can surely be replaced by locally deployed 

solutions after the project lifetime, as soon as smartphone 

hardware has become powerful enough to fulfil the 

requirements. 

 

Component Name  Dialog Management (DM) 

Responsible Partner ASCO / TILDE 

Description Takes the user intent, combines it with other parameters such 

as the current conversation status, configuration restrictions, 

user settings and others to figure out the action to perform. 

                                                
 

 

14 https://www.tilde.ai/ 

https://dev-nlu1-am.portal.azure-api.net/
https://gitlab.inria.fr/comprise/comprise_natural_language_understanding
https://gitlab.inria.fr/comprise/comprise_natural_language_understanding
https://www.npmjs.com/package/comprise_natural_language_understanding
https://www.npmjs.com/package/comprise_natural_language_understanding
https://www.tilde.ai/


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

20 

Planned / Current 

Technical Solution 

for Android  

TILDE.AI 

Repository / URL - not known yet - 

Planned / Current 

Technical Solution 

for iOS 

- same as for Android - 

Repository / URL - same as for Android - 

GitLab-Repository 

for COMPRISE 

https://gitlab.inria.fr/comprise/comprise_dialog_management 

NPM-Repository for 

COMPRISE 

https://www.npmjs.com/package/comprise_dialog_managem

ent 

Cordova-Plugin? No 

Additional 

Comments 

Although Dialogue Management is mentioned separately in 

this overview, it is likely in the further development that 

Dialogue Management and Natural Language Generation are 

merged into one component. 

The Natural Language Processing (Spoken Language 

Understanding + Dialogue Management + Natural Language 

Generation) component requires too much computing power 

to run with an acceptable performance on the client device. 

Therefore, it runs within other COMPRISE Cloud Services, 

being accessed through an API within this component.  

This component surely can be replaced by locally deployed 

solutions after the project lifetime, as soon as smartphone 

hardware has become powerful enough to fulfil the 

requirements. 

 

Component Name  Natural Language Generation (NLG) 

Responsible Partner ASCO / TILDE 

Description Verbalises the identified action into a textual answer to be 

presented to the application user. The answer is in the pivot 

language and must be translated back to the user’s language 

before that. 

Planned / Current 

Technical Solution 

for Android  

TILDE.AI 

Repository / URL - not known yet - 

https://gitlab.inria.fr/comprise/comprise_dialog_management
https://www.npmjs.com/package/comprise_dialog_management
https://www.npmjs.com/package/comprise_dialog_management


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

21 

Planned / Current 

Technical Solution 

for iOS 

- same as for Android - 

Repository / URL - same as for Android - 

GitLab-Repository 

for COMPRISE 

https://gitlab.inria.fr/comprise/comprise_natural_language_ge

neration 

NPM-Repository for 

COMPRISE 

https://www.npmjs.com/package/comprise_natural_language

_generation 

Cordova-Plugin? No 

Additional 

Comments 

Natural Language Generation is mentioned separately in this 

overview, but it is likely in the further development that 

Dialogue Management and Natural Language Generation are 

merged into one component. 

The Natural Language Processing (Spoken Language 

Understanding + Dialogue Management + Natural Language 

Generation) component requires too much computing power 

to run with an acceptable performance on the client device. 

Therefore, it runs within other COMPRISE Cloud Services, 

being accessed through an API within this component.  

This component can surely be replaced by locally deployed 

solutions after the project lifetime, as soon as smartphone 

hardware has become powerful enough to fulfil the 

requirements. 

 

Component Name  Text-To-Speech (TTS) 

Responsible Partner ASCO / All 

Description Transforms the textual answer in the input language into an 

audio signal, which is spoken out to the user of the app. 

Planned / Current 

Technical Solution 

for Android  

1. Kaldi Speech-To-Text / “Idlak” (Reversed adaptation to 
achieve Text-To-Speech) (English),  

2. TILDE Integrated solutions API (Latvian, Lithuanian), 
3. native Android Text-To-Speech Component (Other 

Languages)  

Repository / URL 1. https://github.com/Idlak/idlak 
2. https://www.tilde.com/developers/integrated-solutions-api 
3. https://developer.android.com/reference/android/speech/tt

s/TextToSpeech 

Planned / Current 

Technical Solution 

for iOS 

1. - same as for Android - (English),  
2. - same as for Android - (Latvian, Lithuanian), 

https://gitlab.inria.fr/comprise/comprise_natural_language_generation
https://gitlab.inria.fr/comprise/comprise_natural_language_generation
https://www.npmjs.com/package/comprise_natural_language_generation
https://www.npmjs.com/package/comprise_natural_language_generation
https://github.com/Idlak/idlak
https://www.tilde.com/developers/integrated-solutions-api
https://developer.android.com/reference/android/speech/tts/TextToSpeech
https://developer.android.com/reference/android/speech/tts/TextToSpeech


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

22 

3. Native iOS Text-To-Speech Components (Other 
Languages) 

Repository / URL 1. - same as for Android –  
2. - same as for Android - 
3. https://developer.apple.com/documentation/avfoundation/

avspeechsynthesizer  

GitLab-Repository 

for COMPRISE 

https://gitlab.inria.fr/comprise/comprise_text_to_speech 

NPM-Repository for 

COMPRISE 

https://www.npmjs.com/package/cordova-plugin-comprise-

text-to-speech 

Cordova-Plugin? Yes (Option 2. does not need it, but Option 1 and 3 do, and all 

three are jointly distributed) 

Additional 

Comments 

For Text-To-Speech, usable training data sets are barely 

publicly available. The preferred solution, Ildak, runs locally 

and can be trained on available data in English language. To 

support Latvian and Lithuanian, a secured connection to 

TILDE’s Integrated Solutions API is planned. Data sets for 

other languages are not available yet, which requires us to use 

the native Text-To-Speech functionality of the corresponding 

OS. In the latter case, the user shall download native 

languages packages first to support offline functionalities in 

favour of privacy.  

 

3.3.2 Training Branch  

The Training Branch includes the remaining COMPRISE SDK Client Components which 

are compiled by the SDK Developer UI into the SDK Client Library. These components 

are not related to the speech and language processing chain but extend and supplement 

it with valuable features the project aims to achieve. They are developed during the 

project lifetime and broadly fall into two categories: privacy-aware transformation of user 

inputs both in speech and textual representations, and personalisation of domain-

specific Speech-To-Text and Spoken Language Understanding models locally on the 

client device. The latter influences the models provided for Speech-To-Text components, 

as well as for Spoken Language Understanding and Dialog Management. 

Regarding the role of privacy in speech processing chains and workflows, the Privacy-

Aware Speech Transformation is positioned as the very first client component after an 

App user has spoken a command. It removes sensitive information such as voice 

characteristics. The Privacy-Aware Text Transformation neutralises the resulting text by 

removing critical information like credit card numbers or other contents users do not want 

to share. While the removed and/or replaced information is stored locally to be restored 

if needed, neutralised speech and text data are sent to the COMPRISE Cloud Platform 

as potential training data. 

For example, the statement “I want to order three boxes of insulin against my diabetes” 

could be transformed into “I want to order three boxes of medicine against my sickness”. 

https://developer.apple.com/documentation/avfoundation/avspeechsynthesizer
https://developer.apple.com/documentation/avfoundation/avspeechsynthesizer
https://gitlab.inria.fr/comprise/comprise_text_to_speech
https://www.npmjs.com/package/cordova-plugin-comprise-text-to-speech
https://www.npmjs.com/package/cordova-plugin-comprise-text-to-speech


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

23 

The transformed command contains enough information to be suitable for model training 

purposes within the COMPRISE Cloud Platform but hides the information about the 

user’s health. This prevents abuse of sensitive information. Still, the intent of ordering 

three insulin boxes is kept locally to do the actual order with the external distributor. 

The second major area to address, personalised learning, is done locally as well. After 

the application starts, it downloads domain-specific models from the COMPRISE Cloud 

Platform, which are trained within the COMPRISE Cloud Platform during development 

(initialisation) and application runtime (receiving training data). There, additional 

computations are done to personalise the model towards the individual user with the help 

of adaption data. The purpose of this strategy is to increase the performance of Speech-

To-Text towards the typical characteristics of the user, like voice accent, communication 

speed, or other personal, typical characteristics. Similarly, individual model adaptations 

are done for Dialog Management and Natural Language Understanding tools. 

The components involved in this branch are described in the tables below in a similar 

way as the Operation Branch components above. The components are named and 

described shortly, together with the responsible parties who develop the solution. Since 

the components are being developed, no fixed repositories of existing solutions can be 

provided consequently. Still, all the technologies planned so far are introduced. As this 

still is under investigation, this could change during the project runtime. The deliverables 

mainly reporting about the components are stated as well to give references about 

additional information during the project. As differentiation between Android and iOS 

where needed for the Operation Branch, it is planned to develop a common codebase 

for both platforms. Just as before, the modified components for further usage are both 

published on GitLab for future work, if needed, and on NPM as package, which then can 

be installed on the client device. Additional comments are stated, if needed. 

Currently, most of the solutions are implemented in Python. As all COMPRISE SDK 

Client Library components are running in JavaScript / TypeScript , it is expected to 

include “Bridge”-functionality within the final COMPRISE-NPM-packages, which 

executes the Python functionality. This is not possible in JavaScript / TypeScript code 

directly, but within Android and iOS. As result, native Code is needed and all components 

require Cordova plugins as explained for Text-To-Speech and Speech-To-Text in the 

previous section. To run Python on native OS, we will likely use BeeWare15, as it provides 

templates for Android16 and iOS17.  

Component Name  Privacy-Driven Speech Transformation (PDST) 

Responsible Partner ASCO / INRIA / USAAR 

Description Runs locally on the client device. Removes characteristics of 

user’s voice (like voice characteristics, speed, loudness or 

others) and transforms it into a neutral representation to 

                                                
 

 

15 https://beeware.org/ 
16 https://github.com/beeware/Python-Android-template/tree/3.4 
17 https://github.com/beeware/Python-iOS-template/tree/3.4 

https://beeware.org/
https://github.com/beeware/Python-Android-template/tree/3.4
https://github.com/beeware/Python-iOS-template/tree/3.4


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

24 

ensure privacy. Leaves enough sound quality to the sentence 

to make it suitable for training purposes. 

Pool of Planned 

Technology to use 

Python, Python libraries for deep learning (Pytorch), Python 

libraries for audio I/O 

Most relevant 

deliverables 

 D2.1 “Baseline Speech and text transformation and 
model learning library”, R+OTHER, PU, M6  

 D2.2 “Improved transformation library and initial 
privacy guarantees”, R+OTHER, PU, M17 

 D2.3 “Final transformation library and privacy 
guarantees”, R+OTHER, PU, M27 

GitLab-Repository 

for COMPRISE 

https://gitlab.inria.fr/comprise/comprise_privacy_driven_spee

ch_transformation 

NPM-Repository for 

COMPRISE 

https://www.npmjs.com/package/comprise_privacy_driven_sp

eech_transformation 

Cordova-Plugin? Yes (Python only runs on native code) 

Additional 

Comments 

- none - 

 

Component Name  Privacy-Driven Text Transformation (PDTT) 

Responsible Partner ASCO / USAAR  

Description Runs locally on the client device after Privacy-Driven Speech 

Transformation and Speech-To-Text. Finds sensitive 

information in the text and replaces it with neutralised content 

or even removes the entries to ensure the users’ privacy. 

Leaves enough sound quality to the sentence to make it 

suitable for model training. 

Pool of Planned 

Technology to use 

Python, Python libraries for deep learning (TensorFlow, 

PyTorch), potentially some kind of encryption library 

Most relevant 

deliverables 

 D2.1 “Baseline Speech and text transformation and 
model learning library”, R+OTHER, PU, M6  

 D2.2 “Improved transformation library and initial 
privacy guarantees”, R+OTHER, PU, M17 

 D2.3 “Final transformation library and privacy 
guarantees”, R+OTHER, PU, M27 

GitLab-Repository 

for COMPRISE 

https://gitlab.inria.fr/comprise/comprise_privacy_driven_text_t

ransformation 

NPM-Repository for 

COMPRISE 

https://www.npmjs.com/package/comprise_privacy_driven_te

xt_transformation 

https://gitlab.inria.fr/comprise/comprise_privacy_driven_speech_transformation
https://gitlab.inria.fr/comprise/comprise_privacy_driven_speech_transformation
https://www.npmjs.com/package/comprise_privacy_driven_speech_transformation
https://www.npmjs.com/package/comprise_privacy_driven_speech_transformation
https://gitlab.inria.fr/comprise/comprise_privacy_driven_text_transformation
https://gitlab.inria.fr/comprise/comprise_privacy_driven_text_transformation
https://www.npmjs.com/package/comprise_privacy_driven_text_transformation
https://www.npmjs.com/package/comprise_privacy_driven_text_transformation


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

25 

Cordova-Plugin? Yes (Python only runs on native code) 

Additional 

Comments 

- none - 

 

Component Name  Personalised Learning (PL) 

Responsible Partner ASCO / INRIA / USAAR / ROOT 

Description Uses domain-specific, user-independent speech models from 

the COMPRISE Cloud Platform and leverages adaption data 

from the users to personalise them to user-dependent models. 

The results help Speech-To-Text, Spoken Language 

Understanding and Dialogue Management achieve better 

performance for “non-average” users in terms of speech 

characteristics. 

Pool of Planned 

Technology to use 

Python, Python libraries for deep learning (TensorFlow, 

Pytorch), Python libraries for audio I/O 

Most relevant 

deliverables 

 D3.2 “Initial personalised learning library for speech-
to-text”, R+OTHER, PU, M17  

 D3.4 “Initial personalised learning library for speech-
to-text”, R+OTHER, PU, M27  

GitLab-Repository 

for COMPRISE 

https://gitlab.inria.fr/comprise/comprise_personalized_learnin

g 

NPM-Repository for 

COMPRISE 

https://www.npmjs.com/package/comprise_personalized_lear

ning 

Cordova-Plugin? Yes (Python only runs on native code) 

Additional 

Comments 

- none - 

 

As mentioned, Machine Translation itself is an Operation Branch component, but the 

way of connecting it to the local workflow, and translating content to a pivot language 

and backwards, increases the inclusiveness of the user in a new way. This is because 

Spoken Language Understanding, Dialogue Management and Natural Language 

Generation can be better trained on that language, as more training data is available. As 

Machine Translation was previously explained, the research topic still affords the 

contribution of multiple deliverables, which is stated as a reference in addition. 

Component Name  Machine Translation (MT) 

Responsible Partner ASCO / TILDE 

Most relevant 

deliverables 

 D3.1 “Initial multilingual interaction library”, 
R+OTHER, PU, M15  

https://gitlab.inria.fr/comprise/comprise_personalized_learning
https://gitlab.inria.fr/comprise/comprise_personalized_learning
https://www.npmjs.com/package/comprise_personalized_learning
https://www.npmjs.com/package/comprise_personalized_learning


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

26 

 D3.3 “Final multilingual interaction library”, 
R+OTHER, PU, M26  

 

3.4 COMPRISE Cloud Platform API 

The COMPRISE Cloud Platform is the core entity regarding model training. It provides 

various functionalities for COMPRISE developers and applications to define and use 

domain-specific models. The platform provides interfaces for both the COMPRISE SDK 

Client Library and for developers within the COMPRISE SDK Developer UI. For all 

functionalities, users need access authentication and authorisation components, to 

register and authenticate themselves towards the COMPRISE Cloud Platform and have 

access to everything.  

Once authenticated, applications/developers/annotators can manage the available pool 

of neutral data and models for different purposes, e.g., annotators label domain-specific 

neutral speech and text data. The labelled data are then used for training of domain-

specific neutral models. 

Regarding the Client Library, the COMPRISE Cloud Platform offers an API with access 

model management for services like TILDE.AI, as COMPRISE SDK developers use their 

API to initialise the models provided later, like Spoken Language Understanding (see 

Figure 4). The client App will also make use of the model management components of 

the platform to get these models. After successful training, the models are downloaded 

and used in the App at runtime. Every time neutralised data is incoming from the 

application, the model training component from the COMPRISE Cloud Platform can use 

the updated data set to continue training Speech-To-Text and Spoken Language 

Understanding models for instance. The neutralised data are handled by the training 

data management components of the platform. 

Developers themselves also have access to some UI, e.g., analysis of the current data 

and models stored within the platform or authentication and authorisation. 

More information along this general overview is given within D5.2 “Platform hardware 

and software architecture”.  

Figure 6 gives an overview about the workflow. The COMPRISE Cloud Platform offers 

both Interfaces for the SDK Client Library running in client Apps, and for developers or 

annotators, represented by the SDK Developer UI. The latter uses TILDE.AI’s APIs to 

prepare models which are stored in the COMPRISE Cloud Platform. This guarantees the 

deployment of a multilingual, privacy-aware App instead of a normal application. 

Once the App is running, it uses the technical interfaces to immediately download the 

trained neutral models. They form the foundation for individualisation by the Personalised 

Learning library on the mobile device for Automated Speech Recognition, Natural 

Language Understanding and Dialog Management. In return, every user speech and text 

input is neutralised and transmitted back to the COMPRISE Cloud Platform to allow 

future additional model training. 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

27 

 

Figure 6: Interdependencies between the COMPRISE SDK Developer UI and 
COMPRISE Cloud Platform. 

3.5 Future Documentation 

Cost-effectiveness as a core topic of WP4 requires the SDK to enable COMPRISE App 

development with low investment of time and human resources. This mainly affects a 

well-defined architecture and technical concept, but also needs developers to 

understand all the functionalities very quickly. For that reason, D4.5 provides 

comprehensive documentation in various regards, the enables developers to start 

prototyping very quickly, but also to understand all functions in deeply enough. 

This is realised in three different ways. 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

28 

Firstly, an external document is provided in the form of a manual. It contains a technical 

overview regarding the architecture, technical details, and the way the SDK was realised 

in a short overview. Mainly, it guides the user through the technical dependencies 

needed to install and setup the SDK, the installation process itself, and the way how user 

may use the SDK. This contains explanations about all the functions available in general, 

but also a small sample project to guide the developer though the creation of a 

COMPRISE App, from its initialisation, over the speech model training, to the deployment 

on device. 

Secondly, like initially stated in Section 3.3, all of the COMPRISE SDK Client Library 

components used within the Apps and which are needed to achieve the COMPRISE 

goals are explained to the user, as well as all the other components which are not directly 

related to the project, but make it possible to easily style a simple application UI including 

panels, images, or buttons. 

Besides the actual usage of the SDK, developers also get insight about all APIs used, if 

they want to modify and adapt the toolkit itself for their own purposes. Swagger18 is used 

for the documentation, as it is a tool for proper interface specification and descriptions. 

The reference of this documentation is within D4.5 “Final COMPRISE SDK prototype 

and documentation” as well as in the manual provided. 

4. Implementation Plan 

The COMPRISE SDK interfaces and integrates most of the other technical components 

reused and implemented in the project lifetime. As a result, it is very important to ensure 

that the SDK is developed on time. An implementation plan is presented in order to have 

a clear vision about what to integrate and when. This is also mandatory due to the fact 

that especially the COMPRISE Cloud Platform interfaces might change, the Operation 

Branch Components have a different degree of effort to be integrated and the final 

Training Branch components will only be available at a later stage of the project. By 

taking all these facts into consideration, the implementation started already at M3 

(instead of M6), as also reported within D1.4 “Interim Progress report”, so that there is 

enough time to react if unforeseen issues arise. The plan also includes the SDK 

deliverables needed in WP4, which are the actual one D4.1, as well as D4.3 and D4.5.  

As this deliverable is submitted to internal review on M12, work regarding the SDK has 

been already delivered. This period, M3 – M10, is also mentioned as already delivered 

action within the plan. It is stated in bold how the process went and if some deviations 

were seen and caused. The content since M11 is already the reaction on the progress 

done so far and future assumptions are given. 

 

Time: Month 3+4 Type: Specification 

Action: Define global architecture of the COMPRISE SDK 

All partners owning technical components being integrated by the SDK meet and 

discuss how it positions itself into the whole COMPRISE system environment. 

                                                
 

 

18 https://swagger.io/ 

https://swagger.io/


GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

29 

Technical barriers and changes are identified and reflected to the whole architecture. 

Decisions are made whether technical parameters require modifications to the 

architecture suggested in the proposal. The results of these discussions have been 

included into the global representation stated in Section 3.1.    

This was realised as planned. 

 

Time: Month 5-8 Type: Development 

Action: Enable SDK to create cross-platform applications 

As COMPRISE allows developers to deploy their solution to devices supporting 

multiple operating systems, the project needs to ensure early on that the SDK is able 

to generate an executable application. This includes the definition of a suitable cross-

platform framework, the deployment on devices, and the inclusion of a library which 

contains the COMPRISE-related functionalities in the future.  

This was realised as planned. It was decided that the focus of all development 

is to provide a fully working SDK environment for one OS. This is more 

important than to tackle all operating systems at once. As a result, Android 

components are realised first. The corresponding iOS versions are adapted 

once Android is running well. 

 

Time: Month 7+8 Type: Development 

Action: Inclusion of stub components mocking COMPRISE functionality 

The client App generated by the SDK mostly includes speech- and privacy-related 

components and interfaces, which depend on each other and follow a pre-defined 

workflow. Obtaining an impression of these interdependencies early on is needed to 

figure out additional restrictions and information which could not be foreseen. As a 

result, a very easily and quickly achievable mockup is developed, that contains mainly 

Operation Branch and Training Branch components. These components are not 

COMPRISE-conform yet (lacking privacy, etc.), as they are intended to give an 

uncomplicated technical overview at first. They are replaced one by one by the 

solutions planned in COMPRISE until M30. 

This was realised as planned. 

 

Time: Month 9 Type: Integration 

Action: Integration of Speech-To-Text (STT) 

Starting in M9, components from the Operation Branch are integrated, as these 

components are already present on the market, re-usable with little modifications, and 

not the core output of the project. Additionally, although an initial version of the privacy-

preserving transformations is available, the other new components developed within 

COMPRISE are not available yet for integration. 

The order of integration of the Operation Branch components is the order of their 

usage within the communication workflow. This requires integrating the Speech-To-

Text component first. 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

30 

This was realised as planned, except the iOS adaption. 

 

Time: Month 9 Type: Integration 

Action: Integration of Machine Translation (MT) 

Regarding the Operation Branch, Machine Translation is the next component needed 

to translate the text output by the Speech-To-Text component from the input language 

into a pivot language for the targeted App, e.g., English. Although the integration of 

this component is due by M15 within D3.1 (Software components and documentation 

for Speech-To-Speech translation and integration of dialog systems in the operating 

branch), the component owner, TILDE, confirmed that this component is already in a 

good enough status in M9 to be integrated within the operating branch. Note that the 

improvement of the software components and documentation is due in M15.  

This was realised as planned for both the COMPRISE SDK Developer UI and the 

Client Library. 

 

Time: Month 10 Type: Integration 

Action: Integration of Spoken Language Understanding (SLU)  

The translated content needs to be understood by the application to detect the user 

intent. Spoken Language Understanding is therefore integrated next. This includes 

both a client component and an API interface to the TILDE.AI interface within the 

Developer UI. 

This was realised as planned for both the COMPRISE SDK Developer UI and the 

Client Library. 

 

Time: Month 10 Type: Integration 

Action: Integration of Dialog Management (DM) 

After detecting the intent of the application’s user, the Dialog Management component 

needs to be included to ensure that a suitable answer is brought in response to that 

intent and that is respects other background dependencies like communication history, 

additional settings, etc. This includes both a client component and an API interface to 

the TILDE.AI interface within the Developer UI (if suitable and needed). 

This was realised as planned for the Client Library. The connection to TILDE.AI 

interface within the Developer UI is done in M15, within the timeslot implemented 

for fixing open issues. As mentioned in Section 3.3.2, it is likely that Dialogue 

Management and Spoken Language Generation are merged within the next 

months. 

 

Time: Month 11 Type: Integration 

Action: Integration of Spoken Language Generation (SLG) 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

31 

If the user intent has been interpreted correctly and was executed with success, the 

Spoken Language Generation component needs to generate a textual representation 

of the answer, which could be something simple like “Your order has been transmitted 

successfully”. This includes both a client component and an API interface to the 

TILDE.AI interface within the Developer UI (if suitable and needed). 

 

Time: Month 11+12 Type: Integration 

Action: Integration of Text-To-Speech (TTS) 

The answer generated by Spoken Language Generation and translated back to the 

original language by Machine Translation needs to be converted into speech. This is 

done by a Text-To-Speech component which is integrated as the last Operation 

Branch component.  

 

Time: Month 12 Type: Deliverable 

Action: Submitting D4.1: SDK Software architecture 

This deliverable is submitted at the end of the first year of the project. It includes all 

the results achieved regarding the SDK specification including the main requirements 

and the software architecture. 

 

Time: Month 13+14 Type: Development / Integration 

Action: iOS Adaption (Operation Branch) 

As stated above, we focus on the integration of the Operation Branch for Android first. 

At this point, this has been achieved, so this slot is used to adapt it to iOS and make 

it work with the same quality level. 

 

Time: Month 15 Type: Integration / Development 

Action: Fixing open deployment and integration issues of Operation Branch 

components 

This slot is used as a buffer to solve open and so far unforeseen issues regarding one 

of the previous items. This especially addresses integration aspects of the Operation 

Branch components, but also may aim to address issues regarding deployment of the 

SDK-generated Apps. 

 

Time: Month 16 Type: Integration  

Action: Integration of Privacy-Driven Text Transformation 

After having completed the Operation Branch and the COMPRISE Cloud Platform API 

functionalities, the implementation plan aims to integrate the three components (first 

version) of the Training Branch until D4.3 in M21. 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

32 

Firstly, the plan aims to integrate the Privacy-Driven Text Transformation in M17. This 

is realistic, as the component was delivered in M9 within deliverable D2.1 (design, 

implementation, and evaluation of baseline transformations focusing on deleting the 

user’s identity and words carrying critical information, and model learning). 

 

Time: Month 17 Type: Integration  

Action: Integration of Privacy-Driven Speech Transformation 

After text transformation, the plan aims to integrate the Privacy-Driven Speech 

Transformation in M17. The component has also been delivered in M9 within 

deliverable D2.1 (design, implementation, and evaluation of baseline transformations 

focusing on deleting the user’s identity and words carrying critical information, and 

model learning). 

 

Time: Month 18+19 Type: Integration  

Action: Integration of Personalised Learning for Speech-To-Text 

The Speech-To-Text component implemented in M9 is extended by personalised 

learning mechanisms. The component is due in M17 within deliverable D3.2 (design, 

implementation, and evaluation of initial model personalisation strategies for Speech-

To-Text). 

 

Time: Month 19 Type: Development / Integration 

Action: iOS Adaption (Training Branch) 

As stated above, we focus on the integration of the Training Branch for Android first. 

At this point, this has been achieved, so this slot is used to adapt it to iOS and make 

it work with the same quality level. 

 

Time: Month 20 Type: Integration / Development 

Action: Fixing open deployment and integration issues of Training Branch 

components 

M21 is the delivery date of D4.3 (see below) which also requires a first prototype 

showing the SDK work integrated. This also requires resolving bugs and open issues 

before being able to develop properly. M20 will therefore be used as a buffer to solve 

open and so far unforeseen issues regarding one of the previous items. This especially 

addresses integration aspects of Training Branch components this time. 

The plan therefore foresees the completed integration of both the Operation and the 

Training Branches (in a first version) before the delivery of D4.3 in M21. 

 

Time: Month 20 + 21 Type: Development 

Action: Provision of a sample App using COMPRISE functionality 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

33 

D4.3 shows the results generated in WP2, WP3 and T4.1. As this requires a working 

prototype, the development starts when the most critical bugs (if any) caused by the 

integration are solved. Besides the Operating Branch, the Training Branch 

components are integrated as a first version. 

 

Time: Month 21 Type: Deliverable 

Action: Submitting D4.3: Initial SDK prototype 

D4.3 shows the results generated in WP2, WP3 and T4.1. It includes the prototype 

just mentioned, including more detailed implementation information regarding the 

technology used in both the Operation Branch and the Training Branch components. 

 

Time: Month 22 Type: Improvement 

Action: Improvement of Privacy-Driven Text Transformation 

After having delivered the first prototype, the plan mainly foresees to continuously 

update the initial deliveries of Training Branch components to improved/final versions. 

This affects the Privacy-Driven Text Transformation first. The initial version is updated 

with the improved one delivered in M17 within deliverable D2.2 (design, 

implementation, and evaluation of speech and text transformations addressing more 

types of private information and initial statistical utility/privacy bounds). 

 

Time: Month 23 Type: Improvement  

Action: Improvement of Privacy-Driven Speech Transformation 

The Privacy-Driven Speech Transformation follows in M23. The initial version is 

updated with the improved one delivered in M17 within deliverable D2.2.  

 

Time: Month 24+25 Type: Improvement / Development 

Action: COMPRISE App creation process improvements 

After having initialised the creation of COMPRISE-aware applications 18 months ago, 

it is likely that dependent frameworks have been improved and updated, offering 

improvements in development speed and deployments. The SDK is updated in that 

regard. 

Additionally, having gained experience with the usage of the Developer UI at that point, 

requests made by the consortium and their developers regarding user experience will 

be fixed. 

 

Time: Month 26 Type: Improvement 

Action: Improvement of Machine Translation (MT) 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

34 

Initialised and integrated in the Operating Branch in M9 (maybe with small corrections 

by M15, if D3.1 requires), Machine Translation is integrated in the training branch in 

D3.2 (Software components and documentation for Speech-To-Speech translation 

and integration of dialog systems in both the operating and the training branch). 

 

Time: Month 27 Type: Improvement 

Action: Final version of Privacy-Driven Text Transformation 

In this month, D2.3 foresees the final design, implementation, and evaluation of text 

transformations and final statistical utility/privacy bounds. The COMPRISE SDK Client 

Library has to adapt to the last changes done since M22. 

 

Time: Month 27 Type: Improvement 

Action: Final version of Privacy-Driven Speech Transformation 

D2.3 also delivers the final design, implementation, and evaluation of speech 

transformations and final statistical utility/privacy bounds. The COMPRISE SDK Client 

Library has to adapt to the last changes done since M23. 

 

Time: Month 28 Type: Improvement 

Action: Final version of Personalised Learning 

Personalised Learning was firstly integrated in M18+19 for Speech-To-Text only. D3.4 

(Final design, implementation, and evaluation of model personalisation strategies for 

Speech-To-Text, Spoken Language Understanding and Dialog Management), which 

is to be delivered in M28, finalises this component and extends it to the personalisation 

of Spoken Language Understanding and Dialog Management. 

 

Time: Month 29 Type: Integration / Development 

Action: Fixing open deployment and integration issues of all components 

M30 is the delivery date of D4.5 (see below), which also requires a final prototype 

showing the SDK work integrated. This also requires resolving bugs and open issues. 

M29 will therefore be used as a buffer to solve open and so far unforeseen issues 

regarding one of the previous items. This especially addresses integration aspects of 

the Training Branch components in a final version this time. 

 

Time: Month 29-30 Type: Improvement / Development 

Action: Provision of a final demonstration App using COMPRISE functionality 

D4.5 shows the results generated in WP2, WP3 and T4.1. This includes all the 

components discussed earlier in a final version.  

 



GA Nº: 825081 – COMPRISE – D4.1 – SDK software architecture                                         

35 

Time: Month 30 Type: Documentation 

Action: Provision of a final demonstration App using COMPRISE functionality 

The COMPRISE SDK is fully developed at this point, enabling the consortium to 

finalise the documentation as mentioned in Section 3.5. 

 

Time: Month 30 Type: Deliverable 

Action: Submitting D4.5: Final SDK prototype and documentation 

D4.5 is the final output included in WP4 and this implementation plan, showing the 

final prototype integrating the research results of WP2, WP3, and T4.1 and the 

Swagger online documentation. The deliverable includes the documentation and the 

final prototype App mentioned above, as well as the description of changes done within 

the components since D4.3. 
 

5. Conclusion 

This deliverable explains why the COMPRISE SDK is needed in addition to other toolkits 

for the development of voice-enabled applications available on the market. Namely, the 

COMPRISE SDK provides additional benefits in terms of privacy, cost-efficiency and 

inclusiveness in comparison to its competitors. The document gives an overview of the 

architecture of the SDK and how it fits into the whole COMPRISE system environment 

and which dependencies it has to the COMPRISE Cloud Platform, to developers and the 

applications running on the client device. It is used to design and deploy the App, and it 

interfaces with the COMPRISE Cloud Platform to train domain specific models. Further 

insights are given to better describe the usage of the COMPRISE Cloud Platform API, 

as well as about the COMPRISE Client Library components running within the App. The 

deliverable differentiates the components already present in the market (Operation 

Branch) from those which are developed within the project (Training Branch) to clearly 

highlight the focus. The planning also includes how to document every generated content 

to provide both quick and deep knowledge for users and developers. An implementation 

plan is defined to specify when each of the mentioned contents will be integrated into the 

SDK to achieve a final version at M30.  

The next steps within T4.1 are the realisation of the implementation plan as just provided 

to have an initial prototype at M21. This is to approve that it is possible to translate all of 

the concepts that were mentioned in the plan into a technical implementation. 


